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WHAT GOES AROUND COMES AROUND:  

THE US CLIMATE-ECONOMIC CYCLE 

 

 
 

1. INTRODUCTION 
 

The rise in global socio-economic activity and the accompanying increase in anthropogenic 

greenhouse gas (GHG) emissions that characterized the past century are known to be 

important causes of global warming. Worldwide average surface temperatures have already 

increased by 1.1°C since the industrial revolution and are projected to increase by between 

1.4°C and 4.4°C until 2100 (IPCC, 2023). In turn, temperature increases can lead to lower 

agricultural yields (Deschênes and Greenstone, 2007), more premature deaths (Barreca et al., 
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Abstract. We use a spatial data set of US temperatures in a factor-augmented VAR to quantify the 

contribution of the US economy to fluctuations in temperatures over the past 70 years. We show that 

there are at least five distinct sources of broad scale temperature fluctuations in the US and uncover a 

strong relationship of temperatures with aggregate productivity. Disentangling natural from 

anthropogenic effects, we find that economic expansions do not only lead to warming: technology 

improvements initially decrease temperatures, whereas investment and labor supply shocks increase them 

rapidly and persistently. This happens because the cooling effect of aerosol emissions initially outweighs 

the warming effect from greenhouse gases for technology shocks, but not for investment and labor 

supply shocks. Taken together, these economic shocks explain around 25% of long-term temperature 

variation in the US. In turn, temperature shocks induce small contractions in aggregate GDP, but can 

even be beneficial for the economy, when they predominantly hit the western states. 

 

Keywords. Factor-augmented VAR, climate econometrics, temperature shocks, frequency domain 

identification 
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2015), and diminished productivity (Burke et al., 2015), resulting in potentially severe losses 

in welfare (Bilal and Känzig, 2024). 

 

In this paper, we develop an empirical framework for the United States (US) to study how 

economic activity has affected temperatures and vice versa. We use a factor-augmented 

vector autoregression (FAVAR; Bernanke et al., 2005) to model the dynamics of US 

temperatures on a 0.5° × 0.5° spatial grid together with key macroeconomic aggregates. To 

disentangle the effect of human activity on temperatures from the effect of temperatures on 

human activity, we rely on the notion of structural shocks that is common in causal 

macroeconomic inference (Ramey, 2016). We use partial identification techniques to pin 

down three well-established economic shocks in the frequency domain along the lines of 

Forni et al. (2023). First, a technology shock is identified as the main contributor to low-

frequency variation in utilization-adjusted TFP, similar to DiCecio and Owyang (2010) and 

Dieppe et al. (2021). Second, conditional on the technology shock, we identify an investment 

shock in the spirit of Justiniano et al. (2010, 2011) and Auclert et al. (2020) as the main driver 

of business-cycle fluctuations in investment. Third, similar to Shapiro and Watson (1988), we 

identify a labor supply shock as the main driver of the low-frequency component of hours 

worked, conditional on both the technology and investment shocks. On the other hand, we 

rely on statistical arguments to identify temperature shocks. As Angeletos et al. (2020) identify 

an economic “main business-cycle shock,” we apply a similar reasoning to capture the main 

drivers of temperature fluctuations in specific geographic areas, such as the west coast, the 

east coast, the Gulf region, or the non-coastal states, as well as in specific frequency bands, 

for example, at the El Niño-La Niña periodicities. We then compute the impulse responses 

of US real GDP to these shocks. 

 

Based on our analysis, we report the following qualitative results: First, it is insufficient to rely 

on a single measure of national temperatures such as (weighted) averages, as is frequently 

done in the literature (Dell et al., 2012; Burke et al., 2015; Acevedo et al., 2020). This is because 

there is a lower bound of five large shocks driving US temperatures. Average temperatures 

alone only reflect variation in the Midwest region and neglect temperature changes in the 

economically important coastal areas. This happens because the American Midwest is 

affected by strong cold air flows from the North and warm air flows from the South, leading 

to very high temperature variability (Kunkel et al., 2013). Geographic heterogeneity also 

matters for the effect of temperatures on aggregate GDP, a crucial relationship for 

environmental policy-making: If warming affects only the west of the country, this can be net 

positive for the economy, whereas temperature increases generally diminish output slightly. 

Second, we provide evidence for a relationship between temperatures and socio-economic 

activity mostly through changes in TFP. A loss in productivity is thought to be one of the 

main channels for the negative effects of temperature warming (Burke et al., 2015). We argue 
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along the lines of Pretis (2021) that it is important to properly distinguish if temperature 

fluctuations cause productivity changes or vice versa. In the case of the US, we find that the 

majority of the negative co-movement between temperatures and TFP is caused by economic 

shocks. 

 

In addition, we contribute the following quantitative findings to the literature: First, on 

average, a quarter of the low-frequency component of US temperatures can be attributed to 

the three economic shocks, with technology shocks accounting for 10%, investment shocks 

for 11%, and labor supply shocks for 4%. In the east and south of the US, where 

manufacturing and natural resource processing are concentrated, the explained variation 

from technology shocks alone can be as high as 35%. High and medium cycle variations of 

temperatures, on the other hand, are not strongly explained by anthropogenic shocks. The 

economic shocks have small, yet persistent effects on temperatures. While technology shocks 

initially decrease temperatures in the industrial part of the country, this effect recedes in the 

long run despite the permanent effect on economic activity and emissions. Investment shocks 

and labor supply shocks lead to geographically homogeneous warming, in the area of 0.01°C, 

even though the economic expansion is mostly transitory. We argue that decreases in 

temperatures can be explained by a stronger effect of aerosol emissions than GHG emissions, 

whereas warming is observed when aerosols are removed and GHGs emitted. Second, central 

US and east coast-centered increases of 1°C lead to mild losses of aggregate GDP around 

0.1%–0.13%. This is in line with the view that the US, for the most part, has been close to a 

bliss point where temperature warming has so far had essentially zero aggregate effects (see, 

e.g., Dell et al., 2012; Nath et al., 2023; Natoli, 2023). However, shocks that predominantly 

affect temperatures on the west coast can have expansionary effects. We find them to lead to 

up to 0.29% higher GDP after an initial decrease of around 0.32%. This is because when 

increases in temperatures occur in the west, they are accompanied by decreases in the east. 

The net effect of this is positive for aggregate real GDP. Temperature shocks are not 

persistent for temperatures anywhere in the US. 

 

Comprehensive overviews of the climate-econometric literature are provided by Newell et al. 

(2021) and de Juan et al. (2022). The authors show that especially the estimates of economic 

damages from climate change vary substantially across methodologies. We relate to and 

expand the literature that quantifies the effect of temperatures on the US economy. 

Important contributions over the existing empirical literature are as follows: We identify the 

direct effect on temperatures of economic shocks that explain the bulk of macroeconomic 

fluctuations. This is necessary because policy-oriented models such as Cai and Lontzek (2019) 

focus on damages from temperature changes induced by such economic shocks on the 

economy, although usually relying on TFP shocks alone. In addition, we allow the data to 

determine the timing of the effects of emissions on temperatures rather than assuming that 
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economic activity translates into temperature changes with a delay of a year, as is customary 

in the literature (e.g., Donadelli et al., 2017; Goulet Coulombe and Göbel, 2021), since this is 

not supported by climate research (e.g., Joos et al., 2013; Forster et al., 2020). Instead, we 

propose an identification based on statistical arguments with no implied timing restrictions. 

 

Other studies in this area use mostly panel regressions without dynamic causal response 

estimates (e.g., Deryugina and Hsiang, 2014; Colacito et al., 2019; Gourio and Fries, 2020), 

which are less focused on the transmission mechanism of temperature fluctuations to the real 

economy. Kaufmann et al. (2013), Montamat and Stock (2020), and Stock (2020) discuss 

economic processes affecting climate forcing (and thus temperatures), but do not identify the 

stochastic processes explicitly. Empirical studies that compute the effects of economic shocks 

on US CO2 emissions are Khan et al. (2019), Fosten (2019), and Bennedsen et al. (2021), 

however, no explicit connection to temperature changes is made. Since the effect of 

economic activity on temperatures is not exclusively driven by GHG emissions, but also 

other gases such as aerosols, Magnus et al. (2011), Storelvmo et al. (2016), Phillips et al. (2020) 

provide a breakdown of the respective warming and cooling effects. We show that the aerosol 

cooling effect prevails for technology shocks, whereas other business cycle shocks lead to 

warming through a dominant impulse of GHGs. From a methodological view, our paper is 

closely related to Mumtaz and Marotta (2023), Berg et al. (2023), and Bastien-Olvera et al. 

(2022). The first two for the authors' use of a factor structure for temperature dynamics and 

the third one for the frequency domain decomposition of temperatures. While Mumtaz and 

Marotta (2023) use global data to characterize patterns of aggregate temperature movements, 

their study focuses on correlations with economic development indicators. We provide causal 

interpretations for the variations in temperature data and vice versa. Berg et al. (2023) consider 

only a single factor for their global data set, whereas we show that this captures a very 

localized temperature phenomenon. Bastien-Olvera et al. (2022) regress GDP growth onto 

the low-frequency component of average temperatures extracted using a low-pass filter. 

However, as we show, this component is substantially affected by economic shocks, for 

which the authors do not control. 

 

The rest of the paper is organized as follows: Section 2 describes the temperature and 

economic data we use in the empirical model, Section 3 introduces the model and explains 

the identification methodology, Section 4 presents the findings, which are discussed in 

Section 5. Finally, Section 6 concludes. 

 

2. DATA 
 

Temperature data are obtained from the Terrestrial Air Temperature and Precipitation 1900–

2017 Gridded Monthly dataset (Matsuura and Willmott, 2018), which provides monthly 
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mean temperatures over land at a 0.5 × 0.5 degree resolution for the entire globe. The authors 

compute the monthly average gridded data from daily weather station records, considering 

only stations for which no more than five daily data points in a given month are missing. The 

grid cell data are estimated from measurement station averages through spatial interpolation. 

Outliers and unrealistic values that might arise due to measurement error are removed by the 

authors. 

 

3,325 of the grid points are located in the contiguous United States (i.e., excluding Alaska, 

Hawaii, and the US territories). We aggregate the monthly data to a quarterly frequency by 

taking the average over the three months in a quarter and seasonally adjust each time series 

using the deseason() function of the MATLAB Climate Data Toolbox (Greene et al., 2019), 

which centers and linearly detrends each time series and then removes the climatology, i.e., 

the average of each given month in a year. In addition, we weight each grid point by the 

square root of the cosine of the latitude in the center of the cell. This is common practice in 

the literature that computes empirical orthogonal functions (EOFs) from climate data 

(Hannachi et al., 2007) and serves as a means to account for the arc of the earth, which 

changes the size of degree-based grid cells further away from the equator relative to those 

that are closer to the equator. EOFs are, in essence, the loadings of the principal components 

computed for gridded climate data, which can be used to detect patterns such as the El Niño 

Southern Oscillation (ENSO) (Erichson et al., 2020). 

 

We use this method to summarize the information contained in the gridded land surface 

temperature dataset. To determine the number of principal components, we use the criterion 

of Alessi et al. (2010), which suggests using between 8 and 17 factors. For parsimony, we set 

the number of principal components to r=8r=8 and study the effect of choosing r=17r=17 

in a robustness exercise. Figure 1 shows that the time series for average US temperature and 

the first principal component from our dataset are 96% correlated. In addition, Figure 2 

shows that the first principal component – which carries the same signal as the average  

–explains temperature variation only in the Midwest of the US, while important economic 

centers such as the coastal areas are much less well explained. Expanding the information to 

r=8r=8 yields much higher explained variation, in the area of 80% almost everywhere in the 

US. Similar results appear in other large countries of the world, but are not reported here. 

Therefore, the information in average temperatures covered by a single principal component 

is clearly insufficient to capture the full temperature dynamics of the US. Any approach using 

only nationwide averages will likely miss important spatial temperature information. 

 

 
 



       QUADERNO GIORGIO ROTA N. 12 – ALESSANDRA TESTA, KONSTANTIN BOSS 

   

88 

FIGURE 1 • AVERAGE TEMPERATURES IN THE US AND FIRST PRINCIPAL COMPONENT. 
Correlation is 96% 

 
FIGURE 2 • R² FROM REGRESSION OF GRID CELL TEMPERATURES  

ON PRINCIPAL COMPONENTS 
 

 

 
a) First PC 

 

 
 

b) First 8 PCs 

 
The economic data we include are real GDP, real investment, nonfarm-business sector hours 

worked (obtained from FRED), and utilization-adjusted TFP (from Fernald, 2014). All 

economic variables enter the model in log-levels to account for the possibility of co-

integration among economic and climate variables, as pointed out in Pretis (2020). We have 

checked the model in per-capita terms and found no major difference. A detailed account of 

all the economic data used in this paper and their construction is given in the Appendix. The 

sample we use for estimation of the baseline model runs at quarterly frequency from 1948 to 

2017. 
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Figure 3 plots the economic data together with the trend in average US temperatures. 

Temperatures exhibit an initial decrease until around the 1970s, after which they trend 

upwards. The series appear to share a common trend as of the 1970s but diverge again after 

the Great Recession, where the growth rate in temperatures speeds up. 

 
FIGURE 3 • HP-FILTERED TREND IN MEAN CONTIGUOUS US TEMPERATURES  

(𝜆 = 160000) AND LOGARITHMIZED ECONOMIC TIME SERIES  
Shaded areas are NBER recessions. All data are centered and scaled  

To have zero mean and unit variance 

 
3. ECONOMETRIC METHODOLOGY 

3.1. Reduced form data representation 

Our estimation procedure is carried out in two steps, as in factor-augmented vector 
autoregressions (FAVAR) (e.g., Bernanke et al. (2005)) and dynamic factor models (DFM) 
(e.g., Forni et al. (2009)). These models have the advantage that they can accommodate 
datasets with many time series and allow for the straightforward identification of structural 
shocks and their propagation through the methods common in the literature on structural 
VARs (SVARs) (Ramey, 2016). 
 

The model for the temperatures at grid cell 𝑖 at time 𝑡 is given by: 
 

𝑇𝑖𝑡 = 𝜆𝑖𝑌𝑡 + 𝜂𝑖𝑡 (1) 
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where 𝑇𝑖𝑡 are the raw temperatures and 𝜂𝑖𝑡 is the idiosyncratic component. The vector of 

loadings 𝜆𝑖 captures the sensitivity of temperatures at grid cell 𝑖 to the aggregate variables in 

the vector 𝑌𝑡 = [𝑓𝑡 , 𝑦𝑡]′. We combine the principal components 𝑓𝑡  of the temperature data 

with the selected set of economic variables 𝑌𝑡 . This is a simple version of the model in Phillips 
et al. (2020), where we accommodate spatial dependence of temperatures on common 

factors. The reduced form model for 𝑌𝑡  is a VAR of lag order 𝑝: 
 

𝐴(𝐿)𝑌𝑡 = μ + ϵ𝑡,  ϵ𝑡 ∼ 𝑊𝑁(0, Σ) (2) 
 

where μ is a constant term, 𝐴(𝐿) is a matrix polynomial in the lag operator given by 𝐴(𝐿) =
𝐴0 + 𝐴1𝐿 + 𝐴2𝐿2 + ⋯ + 𝐴𝑝𝐿𝑝, and 𝜖𝑡 is a vector of reduced form white noise errors whose 

variance-covariance matrix is given by Σ. Treating the principal components 𝑓𝑡  as observed, 
model (2) is efficiently estimated using OLS for each equation. The lag order is determined 

using the Akaike information criterion, which yields 𝑝 = 2. Higher lag orders do not change 
our results substantially. The reduced form VAR in (2) is assumed to admit a moving average 
(MA) representation given by: 
 

𝑌𝑡 = 𝐶(𝐿)ϵ𝑡 (3) 
 

where 𝐶(𝐿) is obtained by inverting 𝐴(𝐿), and we have dropped the constant as it is 
immaterial for our identification strategy and the model dynamics. 

 
3.2. Identification 

 
To identify economic and temperature shocks, we rely on techniques that have been 
proposed for the study of business cycle fluctuations. Most environmental models focus 
on aggregate productivity shocks as drivers of emissions (Annicchiarico and Di Dio, 2021). 
However, the recent contributions by Angeletos et al. (2020) and Forni et al. (2023) have 
shown that the economy, and by extension also emissions, fluctuates largely because of 
sources that are not purely related to movements in TFP. Therefore, our analysis is set up 
to provide evidence on alternative channels for the effect of socio-economic activity on 
temperatures, beyond RBC-style technology shocks alone. It is most common to 
distinguish fluctuations of high frequency, business cycle frequency, and low frequency. 
Table (1) shows the definitions of frequency bands we adopt for our purposes: 

 
TABLE 1 • FREQUENCY BANDS ADOPTED FOR IDENTIFICATION 

 
The business cycle frequency is between 6 (1.5 years) and 32 quarters (8 years), as is 
common in the economic literature (Angeletos et al., 2020). This definition roughly 
coincides with medium cycles that are observable in climatic data as well. For example, 
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ENSO (El Niño-Southern Oscillation) influences global weather and occurs every 3-5 years 
and lasts for roughly a year (NOAA, 2023). The higher frequencies coincide with the 
strongest fluctuations in our temperature data. This component is most similar to the types 
of weather shocks usually identified in the literature. The low-frequency band is where we 
expect the strongest influence of socio-economic activity to show up, as it contains the 
slight upward trend in the data that is believed to be caused by human beings. Allowing the 
medium-cycle band to include a few more years (e.g., to include the 11-year solar cycles) 
does not affect our results. 
 
The structural MA representation of (3) is given by 
 

𝒀𝒕 = 𝑪(𝑳)𝑺𝑯𝒖𝒕 = 𝑫(𝑳)𝑯𝒖𝒕 = 𝑲(𝑳)𝒖𝒕, 𝒖𝒕 ∼ 𝑾𝑵(𝟎, 𝑰) (𝟒) 
 

where 𝑺𝑺′ =  𝚺, 𝑯𝑯′ = 𝑰, and 𝒖𝒕 = 𝑯′𝑺−𝟏𝛜𝒕. Identification of the structural shocks boils 

down to pinning down columns of the orthonormal matrix 𝑯. The impulse responses of 
the economic variables (subindex E) and of temperatures (subindex T) are then given by  
 

𝑰𝑹𝑭𝑬 = 𝑫𝑬(𝑳)𝑯 (𝟓) 

𝑰𝑹𝑭𝑻 = 𝚲𝑫(𝑳)𝑯 (𝟔) 
 

The notation 𝑫𝑬(𝑳) is shorthand for selecting the rows from each of the matrices in 

D(𝑳) which correspond to the entries of 𝒀𝒕 that belong to economic variables. 𝚲 is the 

matrix containing the vectors of loadings 𝝀𝒊 for each grid cell. 
 
3.2.1. Identification of economic shocks 
 
We identify three economic shocks – a technology shock, an investment shock, and a labor 
supply shock. These are the three shocks proposed as the main business cycle drivers in 
Justiniano et al. (2010, 2011). To do this, we follow the procedure described in Forni et al. 
(2023), which identifies shocks according to their contribution to the cyclical variances of 
key variables. 
 
Consider the structural representation of equation (4). The cyclical variance-covariance 

matrix of all variables in 𝒀𝒕 in the frequency band between [𝛉, �̅�]
′
is given by: 

 

𝑽(𝛉, �̅�) = ∫ 𝑫(𝒆−𝒊𝛚)𝑫(𝒆𝒊𝛚)′𝒅𝛚
�̅�

𝛉

(𝟕) 

 
 

where, for example, in the case of business cycle frequencies [𝜽, �̅�]
′

= [𝟐𝛑/𝟑𝟐, 𝟐𝛑/𝟔] 

and 𝒊 is the imaginary constant 𝒊 = √−𝟏 . In practice, 𝑽(𝜽, �̅�) can be obtained by 

computing the average over a grid of values between 𝜽 and �̅� and taking the real part of 
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this average (or computing the inverse Fourier transform of the right-hand side in the above 

equation). This returns the total variation of all variables in 𝒀𝒕 in the given frequency band 

as the diagonal elements of the matrix 𝑽(𝜽, �̅�).  

 

To identify a particular shock instead, we use a single column 𝒉 of the orthonormal matrix 

𝑯 to obtain: 
 

𝚿(𝛉, �̅�) = ∫ 𝐃(𝐞−𝐢𝛚)𝐡𝐡′𝐃(𝐞𝐢𝛚)′𝐝𝛚
�̅�

𝛉

(𝟖) 

 
which is the variation of all variables in the given frequency band stemming from the shock 

associated with column 𝒉. For our identification strategy, we want to target only specific 

variables in a given band, so we select the rows of 𝑫 that correspond to these variables. 

Suppose, for example, TFP is ordered second in 𝒀𝒕 then 𝑫𝒎 for 𝒎 =  𝟐 would select the 
corresponding row. As shown in Forni et al. (2023), this can easily be extended for multiple 
targets. This is discussed in more detail for the case of temperature shocks where we make 
use of this technique. We want to find the shock which contributed the majority of 

fluctuations in the given band to our target variable, so the column 𝒉 is identified as: 
 

𝒉 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉

{∫ 𝑫𝒎(𝒆−𝒊𝛚)′𝑫𝒎(𝒆𝒊𝛚)𝒅𝛚
�̅�

𝛉

}  s.t. 𝒉′𝒉 = 𝟏 (𝟗) 

 

The 𝒉 that solves this is the unit-length eigenvector corresponding to the largest eigenvalue 

of the matrix sandwiched in between 𝒉’ and 𝒉 in the above equation (as shown for the time 
domain in Uhlig, 2003). 
 
We first identify the technology shock as the main driver of low-frequency variation in TFP 
as in Dieppe et al. (2021), which echoes the idea of Gali (1999) to identify technology shocks 
as the only long-run driver of labor productivity. Maximization does not imply that a single 
source is responsible for all long-run variation of TFP, but picks out the disturbance that 
contributes the most to its fluctuations. Dieppe et al. (2021) show this method to be more 
robust to interference from other shocks that typically occurs in variance maximization 
approaches such as Barsky and Sims (2011). Conditional on the identified technology 
shock, we then proceed to identifying the investment shock as the main driver of aggregate 
investment over the business cycle. Justiniano et al. (2010, 2011) show that such a shock 
can be interpreted as a shock to the marginal efficiency of capital, that is, how easily 
investment is converted to productive capital. The shock typically induces positive co-
movement between investment and consumption in both representative and 
heterogeneous agent models (Auclert et al., 2020). The conditional shock is identified by 

finding another column of 𝑯 call it 𝒉𝒋: 
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𝒉𝒋 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉𝒋

{∫ 𝑫𝒎(𝒆−𝒊𝛚)′𝑫𝒎(𝒆𝒊𝛚)𝒅𝛚
�̅�

𝛉

}  s.t. 𝒉𝒕𝒆𝒄𝒉
′ 𝒉𝒋 = 𝟎 and 𝒉𝒋

′𝒉𝒋 = 𝟏 (𝟏𝟎) 

 
Finally, the labor supply shock is identified similarly to the TFP shock as the main driver 
of hours worked in the low frequency, but conditional on both the technology shock and 
the investment shock. This identification is inspired by Shapiro and Watson (1988) with an 
analogy to the relationship between Dieppe et al. (2021) and Gali (1999). It is easy to extend 
the maximization constraints in the above equation to pin down this labor supply shock. 
 
To check whether our approach delivers valid identification, we study it in a controlled 
experiment using the model of Justiniano et al. (2011). The approach correctly recovers the 
true IRFs to the economic shocks in the majority of cases as reported in the Appendix. 
Moreover, we check if the sequence of conditional identifications matters for the results in 
a robustness exercise. 
 
3.2.2. Identification of temperature shocks 
 
We use a similar method as for the economic shocks to identify temperature shocks. 
Conditional on the three economic drivers, we extract the maximizers of temperature 
fluctuations in our data set. Economic theory can inform the identification of economic 
shocks, whereas there is no clear guideline for the identifying traits of climate-related 
shocks. For example, zero restrictions using a recursive (Cholesky) or long-run neutrality 
(Blanchard-Quah) scheme seem appropriate, as these would have to hold at every 
temperature location in our data set, requiring an impossible number of zero responses to 
be enforced. Maximizing frequency variations of temperatures has the advantage of being 
statistically driven rather than theoretically and allows us to target many temperature series 
simultaneously rather than restricting individual variables. 
 
To do this, we need to extend the above framework slightly. Call the IRFs of the 

temperature variables 𝛀(𝑳) = 𝚲𝑪(𝑳)𝑺 and collect the columns of 𝑯 which identify the 

economic shocks in 𝑯𝑬 = [𝒉𝒕𝒆𝒄𝒉, 𝒉𝒊𝒏𝒗, 𝒉𝒍𝒂𝒃]. Then the maximization program is the 
following: 
 
 

𝒉𝑻𝒋 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉𝑻𝒋

{∫ 𝛀𝒎(𝒆−𝒊𝛚)′𝑾
𝛉

𝛉

𝛀𝒎(𝒆𝒊𝛚)𝒅𝛚}  s.t. 𝒉𝑻𝒋
′ 𝑯𝑬 = [𝟎, 𝟎, 𝟎]′ and 𝒉𝑻𝒋

′ 𝒉𝑻𝒋 = 𝟏(𝟏𝟏) 

 

As before, 𝒉𝑻𝒋 is a single column of 𝑯 and can be found as the eigenvector of the matrix 

in the quadratic form in the above equation. 𝑾 is a diagonal weighting matrix which 

contains the reciprocals of the square roots of the variances of the 𝒎 targeted variables in 
the frequency band of interest. Given that all our data is measured in degrees Celsius, this 
is less of a concern, but is done for completeness. 
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We do not require the temperature shocks to be orthogonal to each other, only to the 
economic shocks, and inspect the resulting IRFs case by case. This is because the main 
identifying property these shocks have come from geography, which are hardly exclusive. 
Temperature fluctuations on the US west coast, for example, may be driven by additional 
impulses elsewhere in the country. Requiring these impulses to be orthogonal appears too 
restrictive. The targets and bands for identification are chosen as follows: 
 

I. Maximize the low frequency temperature variation everywhere 
II. Maximize the full spectrum temperature variation everywhere 

III. Maximize the full spectrum temperature variation for the West coast (states that 
border the Pacific Ocean) 

IV. Maximize the full spectrum temperature variation for the East Coast (states that 
border the Atlantic Ocean) 

V. Maximize the full spectrum temperature variation for the Gulf of Mexico states 
(Texas, Louisiana, Mississippi, Alabama, Florida) 

VI. Maximize the full spectrum temperature variation for non-coastal states 
VII. Maximize the business-cycle spectrum temperature variation everywhere to capture 

the ENSO pattern 
VIII. Maximize the high-frequency temperature variation everywhere to capture the 

weather shock predominantly used in the literature 
 
The choice is motivated by the geographical patterns we observe in the data, which suggest 
important temperature commonalities in the Midwest, on the coastal regions, and the Gulf 
area. Moreover, the maximizer of low frequency temperature movements will likely pick up 
some non-US socio-economic shocks, and the full-spectrum maximizer is the closest to the 
temperature shock measured in an approach that uses average temperatures, only in this 
case, it is purged of US economic activity. 
 
It is important to point out two properties of the shocks that are identified in our FAVAR 
framework. First, the shocks induce deviations of temperatures at many geographical 
locations in the US from their deterministic components. If the deterministic component 
of temperatures contains any trending behavior, a temperature shock constitutes a deviation 
from this trend. In that sense, explicitly computing the deviation of temperatures from 
some long-term trend and then using these deviations as a shock, as is done in Kahn et al. 
(2021), for example, is very similar, but skips the identification step that tries to pinpoint if 
the deviation comes from human sources or is of natural causes. Second, some climate 
econometric research stresses the importance of extreme weather events as more suitable 
measures of temperature shocks (Natoli, 2023). The shocks that we construct are precisely 
this: they are not predictable from past information about temperatures anywhere in the 
contiguous US and neither from information about GDP, TFP, investment, or hours 
worked. Whether this information set is sufficient is a difficult question to answer. 
Moreover, non-linearities or state-dependence may play an important role in the 
transmission of such shocks, all of which we consider to be important avenues for future 
research. 
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4. RESULTS 

4.1. Descriptive results 

We begin by summarizing the linkages between the US economy and temperatures through 
the lens of the model in equations (1) and (2). As a first exercise, we determine the number 
of shocks that drive US temperatures. In the macroeconometric literature, such shocks are 
sometimes referred to as deep shocks (Forni et al., 2009). We do this by maximizing the 
full-spectrum fluctuations of all US temperature series without conditioning on other 
shocks. Notice that this is done on the spectral density matrix rather than the sample 
correlation matrix used for the computation of the principal components. We repeat the 
same exercise and target the full spectrum of variation in the four economic variables to 
see how these shocks affect temperatures. The outcomes of this are reported in Tables 2 
and 3. 
 

TABLE 2 • CUMULATIVE CYCLICAL VARIANCES EXPLAINED BY THE FIRST SIX SHOCKS  
THAT MAXIMIZE THE FULL SPECTRUM VARIATION OF TEMPERATURES  

AT GRID-CELL LEVEL IN THE US. ROUNDED TO TWO DECIMALS 

 
 

TABLE 3 • CUMULATIVE CYCLICAL VARIANCES EXPLAINED BY THE FIRST SIX SHOCKS THAT 
MAXIMIZE THE FULL SPECTRUM VARIATION OF GDP, TFP, HOURS, AND INVESTMENT 

IN THE US. ROUNDED TO TWO DECIMALS 

 
 

Two important new findings emerge from these tables. First, the common variation in US 
temperatures requires at least five shocks to reach more than 80% explained cyclical 
variance at all frequencies. After the fifth shock, the improvement in explained variance in 
any of the three bands of interest from adding another shock is below 5%. This number 
constitutes a lower bound for the actual number of exogenous temperature drivers, as the 
shocks here are not structurally identified, other than being mutually orthogonal variance 
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maximizers. Based on this result, reducing the effects of temperatures on economic 
aggregates to a single variable such as a (weighted) average, as is frequently done in the 
literature, is implausible. 
 
Second, there is a connection between temperature and economic variation, mostly through 
TFP. The fourth temperature variance maximizer is responsible for a sizable share of TFP 
variation at all frequencies, particularly at the medium part of the spectrum. This seems 
intuitive: the low and medium frequencies are related to the trend in the temperature data 
and it is commonly believed that anthropological forces have contributed to this trend in 
the past half century. Since technology is an important ingredient for economic growth, we 
should expect it to correlate with the lower frequency components of temperatures. 
Moreover, we observe that, in line with the literature (e.g., Forni et al. (2023)), two shocks 
appear sufficient to capture a large share of the cyclical variation in key aggregate economic 
variables. In the low frequency and business cycle bands, hours, investment, and GDP are 
largely driven by the same shock, yet TFP is not. This echoes the findings of Angeletos et 
al. (2020) who also demonstrate a disconnection between TFP and business cycle 
fluctuations of GDP. Interestingly, investment fluctuations of high frequency appear to 
require more than three shocks to be accurately explained. Finally, we see that the second 
shock, which especially drives long-run TFP, is responsible for a large increase in the 
explained variance of average US temperatures. 
 
The descriptive exercise does not allow us to tell apart the respective source of the 
fluctuation. Is the variation in temperatures due to climatic or economic shocks? What part 
of GDP variation is truly due to climatic shocks and which part just masquerades as 
interference from economic shocks? These questions go back to the cyclical nature of the 
climate-economic system, and we need the structural identification exercise explained in 
the preceding section for an answer. 
 

4.2. Semi-structural results 
 

4.2.1. Economic shocks 

We begin by discussing the effects of the economic shocks on the economic variables. This 
is done to confirm that our identification procedure is indeed successful in selecting 
technology, labor supply, and investment related shocks as described in the macroeconomic 
literature. The impulse response functions for this are reported in Figure 4. 
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FIGURE 4 • IMPULSE RESPONSE FUNCTIONS FOR THE THREE STRUCTURAL ECONOMIC SHOCKS 
Shaded areas are bootstrapped 68% and 90% confidence bands 

 

 
 
First, the technology shock leads to an immediate increase in TFP which is accompanied 
by an expansion of real GDP of around 0.4%. Hours initially decline (although this is 
statistically insignificant) and investment increases. These results are very similar to those 
found in Dieppe et al. (2021), who use labor productivity in a spectral identification exercise 
with a different VAR specification. 
 
Second, the labor supply shock leads to a slowly-building increase in output of around 0.3%, 
a mildly hump-shaped response of hours after an initial increase, and an initial reduction in 
investment which is replaced by labor as an input to production. The TFP response is 
almost entirely insignificant, which is partially a result of conditioning on the technology 
shock. The slow-building GDP response is consistent with other studies that identify labor 
supply shocks such as Foroni et al. (2018) (for the US) and Peersman and Straub (2009) (for 
the euro area). The responses of hours and GDP are in line with the paper of Shapiro and 
Watson (1988), which we have used as motivation for the identification strategy. 
 
Lastly, the investment shock creates hump-shaped expansions in investment, hours, and 
GDP and a hump-shaped decline in TFP. These responses are in line with the motivating 
paper of Justiniano et al. (2011). The decrease in TFP is also observed in Ben Zeev and 
Khan (2015) (although in their paper the response is insignificantly different from zero) for 
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investment-specific technology shocks. More inputs are used to produce only slightly more 
output, thus productivity must fall. We take these results as evidence that our proposed 
identification strategy can indeed correctly pick out empirically valid impulse responses in 
a joint identification framework, even though the identification approach is entirely built 
on spectral identification and does not exactly copy the approaches in the originally 
proposed papers. 
 
Next, we describe the responses of US temperatures to the three expansionary economic 
shocks, a key result of this paper. It is important to note that the impact reactions (near 

impulse response horizon 𝒉 = 𝟎) of temperatures across the US to the shocks are difficult 
to measure accurately due to the high volatility of the temperature time series as opposed 
to the macroeconomic aggregates. We therefore prefer not to interpret temperature 
responses to economic shocks near the impact. The graphs in Figure 5 show the following 
picture: the technology shock has a cooling effect on temperatures in the east and the south 
of the US. Importantly, as the impulse horizon increases, the effect dissipates almost 
everywhere, which suggests that eventually, cooling and warming offset each other. The 
effect is persistently significant at the 68% confidence level even after 10 years. The 
investment shock leads to increases in temperatures almost throughout the US after 10 
years, initially dominating in California, Arizona, near the Canadian border, and in the east. 
Finally, a similar pattern emerges for the labor supply shock, although the initial 
temperature responses are less pronounced compared to the investment and technology 
shocks. As far as the magnitudes of the responses are concerned, they range between –0.03 
and 0.01°C (technology shock), -0.01 and 0.02°C (labor supply shock), and –0.01 and 
0.02°C (investment shock).2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2 These values are computed across all horizons and grid cells as a single standard deviation around the 
mean response for each of the three shocks. 
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FIGURE 5 • GRID CELL TEMPERATURE IRFS AT GIVEN HORIZONS IN RESPONSE  
TO THE THREE ECONOMIC SHOCKS 

 

 
 
 
 

a) Tech. shock after 1 year 

 
 

b) Lab. Sup. shock after 1 year 

 
 

c) Inv. shock after 1 year 

 
 

d) Tech. shock after 5 years 

 
 

e) Lab. Sup. shock after 5 years 

 
 

f) Inv. shock after 5 years 

 
 

g) Tech. shock after 10 years 

 
 

h) Lab. Sup. shock after 10 years 

 
 

i) Inv. shock after 10 years 

 
 

j) Tech. shock after 15 years 

 
 

k) Lab. Sup. shock after 15 years 

 
 

l) Inv. shock after 15 years 
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Next, in Table 4 we report the relative importance of each of the three economic shocks in 
explaining average temperature movements, as well as the fluctuations of our economic 
variables at low, business cycle, and high frequencies. 
 

TABLE 4 • INDIVIDUAL CYCLICAL VARIANCES EXPLAINED BY THE THREE IDENTIFIED 
ECONOMIC SHOCKS OVER THE THREE FREQUENCY BANDS 

Numbers in parentheses are the 90% confidence bands associated with the percentage 
above. Rounded to two decimals 

 

 
 
Taken together, the three economic shocks explain around 25% of the low-frequency 
movement of temperatures. Technology and investment shocks contribute the most (10% 
and 11%, respectively), while labor supply shocks contribute less (4%). We conclude from 
this that a non-negligible share of the trend- and long-cycle component of temperatures is 
caused by anthropological activity in the United States. The economic shocks are not 
important sources of average short-term temperature fluctuations, which we interpret as 
evidence that such fluctuations are mostly due to natural or non-US causes. The three 
shocks also appear to be reasonable choices to explain business cycle fluctuations in the 
economy. Together, they account for 87% of the business cycle (BC) variation in GDP, 
87% of the variation in TFP, 97% of the variation in hours, and 89% of the variation in 
investment. 
 
The spatial distribution of explained variances for the three shocks is presented in Figure 6. Given 
that there is hardly any variance arising at medium and short frequencies, we report this only for 
the low frequency. Patches of relevant fluctuations are observable in all three cases. For the 
technology shock, the variances explained are around 35% in the east and in the south, 
particularly in Texas. For the investment and labor supply shocks, the patterns emerge 
predominantly in the south and in the corridor across Colorado, Wyoming, and Idaho, 
where the labor supply shock was cooling. Explained variances for the investment shock 
are locally larger than 40% in some areas in the south, while they are lower in the case of 
the labor supply shock. 
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FIGURE 6 • GRID CELL LEVEL CYCLICAL VARIATION EXPLAINED AT LOW FREQUENCIES 
FROM THE THREE ECONOMIC SHOCKS 
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4.2.2. Temperature shocks 

Next, we turn to the effects of the temperature shocks that are identified as described in 
section 3. For ease of interpretation we have normalized all shocks such that the impact 
response in average temperatures is scaled to 1 degree Celsius, as is customary. We are 
primarily concerned with the effect of temperature changes on GDP as all other economic 
variables were used for identification purposes. Figure 7 summarizes the resulting IRFs. 
 

FIGURE 7 • IMPULSE RESPONSE FUNCTIONS FOR THE DIFFERENT TEMPERATURE SHOCKS. 
Shaded areas are bootstrapped 68% and 90% confidence bands 

 
 

All of the identified shocks lead to small and persistent GDP contractions between 0.1% 
and 0.2%, except for the shock that primarily affects the West Coast of the US. The 
confidence bands are consistently very close to the zero line. This result aligns with the 
majority of the literature, which finds substantial uncertainty in the estimates of temperature 
shocks in the US. For example, Newell et al. (2021) and Nath et al. (2023) find nearly zero 
effects for countries with an average temperature around 13 degrees Celsius, such as the 
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US. Negative effects of temperature shocks in the range of 0.1% are also reported by Natoli 
(2023) (although using an instrumental variable approach), and slightly more negative 
impacts are documented by Colacito et al. (2019). Dell et al. (2012) found insignificant effects 
of temperatures on output in rich countries. These results are consistent with the shock in 
our set that maximizes temperature variation across the entire US over all frequency bands. 
However, our analysis goes beyond this conclusion, revealing that more than one shock is 
needed to capture US temperature variation. In fact, without imposing orthogonality for 
this exercise, the West Coast shock is only 2% correlated with the low-frequency maximizer, 
3% with the full spectrum maximizer, and a relatively low 33% with the East Coast shock. 
Interestingly, it produces a comparatively sizable expansion in aggregate GDP (although 
this is statistically insignificant). This effect would either be lost entirely or blended into 
average results obtained through conventional econometric techniques. As Table 4 
suggests, the share of variation in the economic variables from temperature movements is 
very small, which is why we choose not to report them here. 

 
For illustration of the spatial distribution of impulse responses, we focus on the full 
spectrum maximizer for temperatures everywhere and the West Coast shock. These two 
shocks are only 3% correlated, without the imposition of orthogonality. Figure 8 shows the 
signs of the responses. Clearly, the full spectrum maximizer without geographical 
constraints raises temperatures everywhere except for the West Coast. The shock that 
drives temperatures up on the West Coast simultaneously decreases them in the East. Due 
to the scaling of the average temperature to equal 1°C, the positive responses outweigh the 
negative ones. Both of these shocks are quantitatively important for temperature variations 
(38% and 16% on average, respectively, over all frequency bands). Importantly, we find no 
evidence of significant persistence in either of the temperature shocks considered here. 
After around three years, all effects on temperatures turn insignificant. 
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FIGURE 8 • GRID CELL TEMPERATURE IRFS AT GIVEN HORIZONS IN RESPONSE  
TO THE FULL SPECTRUM AND THE WEST COAST TEMPERATURE SHOCKS 

 

 
a) Full spectrum shock on impact 

 
b) West coast shock on impact 

 
c) Full spectrum shock after 1 year 

 
d) West coast shock after 1 year 

 
e) Full spectrum shock after 2 years 

 
f) West coast shock after 2 years 

 
g) Full spectrum shock after 3 years 

 
h) West coast shock after 3 years 
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To summarize the semi-structural results, we observe that economic sources, particularly 
technology and investment shocks, are locally important drivers of temperature variations. 
These shocks lead to noticeable decreases (technology) and increases (investment, labor 
supply) in temperatures that persist for many years and are noticeable even relatively shortly 
after the initial shock. Treating temperatures as unaffected by anthropogenic forces even in 
the short run can thus lead to confounding causal effects, especially when annual data is 
used, as is customary in the literature. Moreover, it is crucial to distinguish the effects of 
temperature shocks on aggregate GDP based on the geographical location of the shock's 
epicenter. If the West Coast is predominantly affected, GDP may remain unaffected or 
even increase, while shocks in other parts of the country can lead to small contractions. 
This distinction is important for assessing the damages of temperature warming, which are 
incorporated into models used for policy decisions. 
 
 

5. DISCUSSION 

5.1. The effects of economic shocks on temperatures 

The documented effects of the three economic shocks on temperatures across the US 
warrant closer inspection. The connection between economic activity and temperatures 
operates through the emission and storage of climate-active gases. Magnus et al. (2011) 
decompose the temperature effect of anthropogenic gas emissions into warming – through 
the emission of greenhouse gases (GHGs), most prominently CO2 – and cooling –  
through aerosol emissions, most prominently SO2. CO2 is a long-lived, well-mixing gas that 
spreads through the Earth’s atmosphere over time, while SO2 produces quick but more 
short-lived localized cooling by reflecting incoming solar radiation. 
 
There is increasing evidence from the natural sciences literature suggesting that emission 
impulses can lead to temperature effects within a short time span. Notably, Ricke and 
Caldeira (2014) and Zickfeld and Herrington (2015) suggest that CO2 emission impulses 
can lead to significant warming relatively quickly – 93% of the peak warming effects 
materialize after 10-15 years following an emission impulse in their experiments, even 
considering potential non-linearities. Such horizons are well within the customary 
projection range for FAVAR models. Complementary to this, Joos et al. (2013) calculate 
average surface-temperature responses to CO2 emission impulses and find positive 
reactions contemporary with the initial impulse. Methane is another powerful GHG that 
develops much of its effects over a short horizon (Mar et al., 2022). Therefore, our finding 
of quick temperature changes in the US after economic shocks aligns with results found in 
climatology research. Nevertheless, we want to emphasize that the very long run, where 
GHG effects are still active, may be less precisely estimated in our model. 
 
Technology shocks induce cooling in parts of the US east and south. This suggests that the 
solar radiation effect from aerosol emissions outweighs the heating effect from GHG 
emissions at these locations, especially in the short run. We investigate this hypothesis 
further by running the following analysis: to the VAR consisting of GDP, TFP, investment, 
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and hours worked, we add time series for GHGs and SO2 emissions in the US for the same 
sample we used in our previous analysis. The emissions data are available at a yearly 
frequency. The data for GHGs are retrieved from https://ourworldindata.org/greenhouse-
gas-emissions and are based on Jones et al. (2023); the data for SO2 are from Smith et al. 
(2011) until 1990 and from then on from the EPA (https://www.epa.gov/air-emissions-
inventories/air-pollutant-emissions-trends-data). We estimate the VAR with a single lag 
and identify a technology shock and an investment shock in exactly the same fashion as 
before, using frequency domain techniques. 

 
FIGURE 9 • IMPULSE RESPONSE FUNCTIONS OF LOG EMISSIONS TO TECHNOLOGY AND 

INVESTMENT SHOCKS IN THE YEARLY VAR (1) FOR ONLY ECONOMIC VARIABLES. 
Identification in the frequency domain adapted to yearly measurements 

 
 

Figure 9 shows the responses of SO2 and GHG emissions to the two main expansionary 
shocks (technology and investment). The impulse response functions (IRFs) for the other 
economic variables are consistent with the quarterly exercise and are therefore not reported 
again. The permanent shock to TFP also leads to permanent increases in both SO2 and 
GHG emissions. However, the increase in SO2 emissions is about 2% initially and up to 
6% after 15 years, while GHG emissions increase only between 0.5% on impact and slightly 
below 1.5% in the long run. We interpret this as evidence that what we observe in the 
quarterly FAVAR is cooling from increased aerosol emissions. This observation is 
consistent with the localized effects in the south-east of the country, which we discuss 

https://ourworldindata.org/greenhouse-gas-emissions
https://ourworldindata.org/greenhouse-gas-emissions
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
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further below. Importantly, as noted in Magnus et al. (2011), SO2 is itself short-lived. 
Despite the sustained increase in SO2 emissions, the cumulative warming effect from 
GHGs eventually neutralizes the cooling from aerosols in our quarterly FAVAR, which is 
why, as the IRF horizon increases, the cooling effects disappear or even turn into warming. 
For the investment shock, on the other hand, we observe impulses in both SO2 and GHGs 
of equal magnitude. However, the SO2 impulse is only mildly significant for about one year 
before emissions (insignificantly) decrease. GHG emissions increase strongly and persist 
for a longer period, leading to the rapid dissipation of the cooling effect and dominance of 
the warming effect from GHGs throughout the horizon in the quarterly FAVAR. This 
explains why temperature changes after the investment shock are observed across almost 
the entire country and remain significant even after 15 years – there is no sustained 
counteracting cooling effect. 
 

FIGURE 10 • SO2 AND CO2 EMISSIONS ARE COMPUTED FROM EPA’S NEI 2020 DATA SET FOR 
SITE-SPECIFIC EMISSIONS (https://www.epa.gov/air-emissions-inventories/2020-national-

emissions-inventory-nei-data). These include emissions from fossil fuel combustion, industrial 
processes and biomass (e.g. Wildfires), but exclude onroad emissions 

 

 
a) Sulfur dioxide emissions 2020 

 
b) Carbon dioxide emissions 2020 
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Curiously, the geographical pattern of temperature changes following a technology shock, 
as shown in Figure 6, roughly coincides with the locations of important parts of the 
American energy-producing, manufacturing, and natural resource processing industries. 
Figure 10 demonstrates that these areas are also centers of CO2 and SO2 emissions. Conley 
et al. (2018) study the responses of temperatures to the hypothetical removal of all US-based 
SO2 emissions and document a very similar geographical pattern (with inverted signs, as 
they consider SO2 removal rather than emission). Based on this observation, we are 
confident that our economic shocks lead to temperature-altering emissions in the expected 
parts of the country. Furthermore, given the localized nature of aerosol-related cooling, we 
interpret this spatial pattern as evidence that the channel we identify for our technology 
shock is indeed dominated by SO2 emissions. 

5.2. The effects of temperature shocks on GDP 

 
Next, we turn to the discussion of the different effects of west coast-centered temperature 
shocks and the other temperature shocks we have identified. We focus on the full spectrum 
maximizer as a representative of the other shocks and recall that both shocks lead to a one 
centigrade increase in average US temperatures, but the GDP responses present opposite 
signs. Our reasoning for this finding is based on previous results in the literature. 
 
First, consider sector-level responses. Increases in temperatures have been shown to reduce 
output in almost every industry, especially in agriculture and construction (Colacito et al., 
2019). The temperature increase that follows the full spectrum shock affects almost the 
entire US and thus essentially all industries (a notable exception being California), thus 
depressing aggregate GDP. Conversely, the west coast shock leads to increased 
temperatures on the west coast but is accompanied in the data by lower temperatures in the 
east. In our linear model, decreasing temperatures should be beneficial for output in those 
states. The heating in the west does not appear to offset this positive effect. 
 
Second, we turn to geographical differences. Hsiang et al. (2017) provide estimates of the 
projected spatial distribution of climate effects for the US. They calculate a gain in 
agriculture from increased temperatures in the north-west of the country and project overall 
total damages to concentrate in the south-east of the country, whereas the north-western 
states experience positive effects from warming. The largest damages from temperature 
increases go through excess mortality in the densely populated east and the already warmer 
south of the US in their study, also reported by Carleton et al. (2022). Therefore, the 
warming in the west and cooling in the east we document after the west coast shock should 
benefit the western industries and lead to fewer deaths in the east, which sums to a net 
positive effect for aggregate GDP. The full spectrum shock, on the other hand, does not 
produce the warming gains in the north-west but leads to warming in the areas where excess 
mortality has been shown to be of high importance in the transmission of temperatures to 
GDP. 
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In light of these arguments, we carry out the following exercise to better understand how 
the shocks impact state-level income. We expect the full spectrum shock to be damaging 
almost everywhere and the west coast shock to be expansionary, at least in the eastern 
states, but potentially also in the west. To do this, we run the following local projections 
(Jordà, 2005) for each state in the contiguous US individually: 
 

𝑦𝑡+ℎ = μℎ + βℎ𝑠�̂� + γℎ(𝐿)𝑦𝑡−1 + ϵ𝑡+ℎ,  for h = 1, 2, … , 40 (12) 
 

where 𝑦𝑡+ℎ is the log of quarterly real personal income,3 𝜇ℎ is a constant, 𝑠�̂� is alternatively 

the unit variance full spectrum or west coast shock estimated in the FAVAR, 𝛾ℎ(𝐿) is a 

lag-polynomial of order two as in the FAVAR, and 𝜖𝑡+ℎ  is a forecast error. The coefficient 

𝛽ℎ measures the response to the shock of interest at each horizon ℎ. 
 
Figure 11 shows that the full spectrum temperature shock indeed decreases income in 
nearly all states, except for New York, which nonetheless experiences reductions in income 
for most of the horizon. The west coast shock, on the other hand, produces mixed impulse 
response functions (IRFs). The majority of economically large states (by share of national 
GDP) experience income increases, except for Colorado, Florida, and Texas, where the 
losses are relatively small. Big west coast economies such as California and Washington see 
long-run benefits from the shock, although these are small in magnitude. We take the 
evidence from this auxiliary model as supportive of the idea that temperature increases, in 
general, are detrimental for output, possibly by increasing mortality or lowering 
productivity. However, we caution that a measured increase of average US temperatures of 
one degree Celsius can come in different shapes, which produce different dynamics at the 
state level and then translate into different aggregate responses. We believe that our two 
example shocks are good representations of actual co-movement in temperatures 
experienced in the US. Any exercise focusing on the simple average temperature, which is 
similar to the full spectrum maximizer, will likely miss the effects induced by the west coast 
shock and may lead to incomplete conclusions for damage functions and policy 
implications. 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 Personal income data at the state level at quarterly frequency is collected from BEA table SQINC4 and 
deflated using the GDP deflator and alternatively the CPI. The sample spans Q1:1948 - Q4:2017. 
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FIGURE 11 • IMPULSE RESPONSES TO THE FULL SPECTRUM AND THE WEST COAST 
TEMPERATURE SHOCKS IDENTIFIED IN THE FAVAR  

IRFs are obtained by means of a local projection of real personal income at the state level 
onto its own lags and the identified unit variance shock. The states with name tags are 

the largest 15 states by GDP. Blue lines indicate negative responses after 40 quarters. Red 
lines indicate positive responses after 40 quarters 

 

 
a) Full spectrum shock on real personal income 

 
c) West coast shock on real personal income 
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6. CONCLUSION 
 
We model an empirical joint climate-economic system to investigate the effect of economic 
shocks on temperatures in the US and vice versa. Using the principal components of a 
large, gridded dataset of US temperatures, we show that at least five shocks are necessary 
to accurately reflect temperature variations of different frequencies everywhere in the 
contiguous US, calling into question papers that use a single “climate shock” or focus on 
cross-sectional averages to reflect temperature warming. We show that a clear connection 
between the economy and temperatures exists, which is mostly driven by changes in Total 
Factor Productivity (TFP). We identify three economic shocks, arguably responsible for the 
bulk of business-cycle and long-term variation in the US economy and thus emissions of 
climate-active gases – a technology shock, a labor supply shock, and an investment shock. 
Identification in the frequency domain allows us to mix medium-term and long-term 
identification assumptions. There is clear evidence that economic activity has affected US 
temperatures. Together, the three shocks account for around 25% of the low-frequency 
component of US temperatures. Investment shocks increase temperatures on average, 
technology shocks decrease them, and we explore the reasons for this by showing a 
significant role for aerosol emissions that induce local, short-lived cooling and greenhouse 
gas (GHG) emissions that lead to slow-paced, encompassing warming. 
 
On the other hand, the economic damages from changing temperatures are small and come 
with substantial uncertainty. We show that temperature changes that affect primarily the 
US west coast lead to small economic expansions, as they are accompanied by decreasing 
temperatures in the east and south. Shocks raising temperatures elsewhere are mildly 
recessionary, suggesting that the US has been well-adapted to temperature change in the 
past. 
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APPENDIX 
 

A DATA CONSTRUCTION 
 
We follow Angeletos et al. (2020) in constructing the economic variables. 
 

TABLE 5 • ECONOMIC DATA SOURCES AND TRANSFORMATIONS 

 
 

The variables enter the model as follows: 
 
1. Real GDP: log(GDPC1) × 100 
2. Real investment: log((DDURRE1Q156NBEA + A006RE1Q156NBEA) × GDPC1) × 100 
3. Hours: log(PRS85006023 × CE16OV ) × 100 
4. TFP: cumsum(dTFPU/400) × 100 
5. Population: GDPC1/A939RX0Q048SBEA 
 

For checks, the variables real GDP, real investment, and hours can be transformed to per 
capita units by dividing by the population level as computed above before taking logs. 

 
 
B BOOTSTRAP PROCEDURE 
 
We compute confidence bands for the IRFs and the cyclical variances using the following 
bootstrap procedure: 
 

1. 1.Use (2) to generate a new vector 𝒀𝒕by bootstrapping from the reduced form 
residuals. 

2. Use the method of Kilian (1998) to correct the bias of the OLS estimates. 

3. Use 𝚲 to recompute the common component of temperatures, 𝚲𝒀𝒕, and add the 

original idiosyncratic component, 𝛈𝒊𝒕, to get a new data set of US temperatures. 
4. On this new data set, estimate r = 8 principal components, and re-estimate a 

bootstrap 𝚲𝑩. 

5. Estimate the FAVAR in (2) again with 𝒑 = 𝟐. 
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6. Identify the shocks sequentially, compute IRFs and the cyclical variances. 
7. Repeat this 1, 500 times to obtain bootstrap distributions of the IRFs and the 

cyclical variances. 
8. Find the quantiles of the bootstrap distributions to get the 68% and 90% intervals. 

 
C  ROBUSTNESS CHECKS 
 
To test the sensitivity of our results to the underlying assumptions, we conduct the 
following robustness checks: 
 
1. Changing the number of temperature factors: 
We originally used a statistical criterion to determine the number of factors to be extracted 
from the gridded temperature dataset, opting for r=8 for parsimony. The upper bound 
recommended by the criterion was r=17, which we also test. In this case, we set p=1 
according to the Bayesian Information Criterion (BIC). 
 
2.  More lags: 
Our results focus primarily on the low-frequency components of temperatures. To address 
potential inaccuracies due to a very short lag length, we test an increased lag length. In the 
baseline specification, p=2; here, we increase this to p=4. Given the frequentist approach 
to estimation, results become quite erroneous for even larger lag orders. 
 
3. Sub-sample analysis (1970): 
The dataset used spans from 1948 to 2017. The trend in temperatures attributed to human 
influence becomes very pronounced around 1970. Additionally, SO2 emissions in the US 
start to decline from the 1970s. We repeat our analysis by excluding the first 22 years from 
the sample to observe any changes. 
 
4. Potential interference from outside shocks: 
Non-US shocks may drive business cycle (BC) and low-frequency (LF) variation in US 
aggregates, affecting temperatures. Although the US is typically considered to have frontier 
technology (Nath et al., 2023), shocks from China might spill over and be misidentified as 
US shocks. Given the challenge of obtaining long quarterly time series for China, we use 
annual series for CO2 emissions, which show a significant increase from 2000. We thus cut 
the sample at Q4:1999 to check for potential external influences from China. 
 
5. Maximizing long-run IRFs instead of variances: 
As an alternative to maximizing variances, we explore maximizing the long-run IRF of Total 
Factor Productivity (TFP) and hours, as suggested in Forni et al. (2014). This approach is 
crucial since the connection between the economy and temperatures largely runs through 
TFP, making accurate identification of the technology shock essential. 
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6. Variables in per capita terms: 
Long-run economic dynamics may be affected by demographic changes (Francis and 
Ramey, 2009), which are not explicitly accounted for in our baseline specification. 
Population changes are a significant source of emission variations according to the Kaya 
identity. We check whether expressing economic variables (GDP, hours, and investment) 
in per capita terms alters our results. 
 
Robustness Results: 
 
The results are generally insensitive to changes in lag order, number of factors, or 
specification of variables in per capita terms. Minor changes are observed for sub-samples 
and when altering the long-run identification assumption, as detailed in robustness check 
5. Figure 12 illustrates the IRFs for average US temperatures in response to economic 
shocks. The most notable differences occur when changing the sub-samples to post-1970 
and pre-2000. In these cases, the technology shock leads to positive temperature responses 
due to the diminished role of SO2 emissions and other aerosols in cooling temperatures 
after 1970. Similarly, excluding the more recent period attributes some cooling to the 
investment shock, as the reduction in SO2 emissions has not yet fully materialized. These 
changes, while interesting, underscore the significance of this additional channel for the 
transmission of economic activity to temperature changes. 
 

FIGURE 12 • IMPULSE RESPONSE FUNCTIONS OF US AVERAGE TEMPERATURES TO 
ECONOMIC SHOCKS FOR ROBUSTNESS CHECKS 1-6. 

 



       QUADERNO GIORGIO ROTA N. 12 – ALESSANDRA TESTA, KONSTANTIN BOSS 

   

120 

Figure 13, on the other hand, reports the IRFs of real GDP to the different temperature 
shocks for all robustness checks. We observe that changing the number of temperature 
principal components or the number of lags has negligible effects on the IRFs compared 
to our baseline specification. The same goes for taking the variables in per capita terms. 
Changes in the responses of GDP to the temperature shocks are slightly more pronounced 
if we use labor productivity instead of TFP or the maximal response identification strategy 
to obtain the technology shock and then condition the temperature shocks on it. All in all, 
the baseline specification lies roughly in the middle of the IRFs under the different 
robustness checks. We leave the robustness check IRFs of the economic variables to the 
economic shocks in the Appendix since the only minor difference arises when using the 
response maximization approach over the cyclical variance maximization approach. 

 
FIGURE 13 • IMPULSE RESPONSE FUNCTIONS OF GDP TO TEMPERATURE SHOCKS  

FOR ROBUSTNESS CHECKS 1-6 
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FIGURE 14 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES TO ECONOMIC 
SHOCKS FOR ROBUSTNESS CHECKS 1-6.

 
 

Lastly, we check if the sequence of conditional identifications matters for our results. We 
therefore permute the identification order of the three economic shocks – technology (T), 
investment (I) and labor supply (H) – to allow for all possible orderings and report the 
economic and temperature IRFs. 
 

FIGURE 15 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES FOR DIFFERENT 
ORDERINGS OF IDENTIFICATION. 
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FIGURE 16 • IMPULSE RESPONSE FUNCTIONS OF AVERAGE TEMPERATURES  
FOR DIFFERENT ORDERINGS OF IDENTIFICATION 

 
Figures 15 and 16 show that while there are some differences in the responses of the 
economic variables if the investment shock is identified first, these do not translate to 
changes in the more important results for temperature changes following the economic 
expansions. 

 
D SIMULATION EXERCISE 

 
We simulate 1,000 instances of the model proposed by Justiniano et al. (2011) using the 
Macroeconomic Model Data Base in Dynare (Wieland et al., 2012, 2016), adhering to the 
standard settings without modifications. Each simulation includes data for GDP, Total 
Factor Productivity (TFP), hours worked, and investment, along with additional series that 
are not considered for this exercise. For each of the 1,000 simulations, we extract the true 
Impulse Response Functions (IRFs) for neutral technology shocks, investment shocks, and 
wage markup shocks (which have a similar interpretation to our labor supply shocks). We 
then apply our sequential identification strategy to identify these three structural shocks in 
the frequency domain using a VAR(4) model with the four economic time series of interest. 
 
In the model of Justiniano et al. (2011), the neutral technology shock is the sole driver of 
TFP growth, the wage markup shock is the primary factor influencing low-frequency 
changes in hours worked, and the investment shock predominantly affects investment 
variation in the business cycle band. Consequently, our identification approach is 
theoretically validated for this case. 
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FIGURE 17 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES TO ECONOMIC 
SHOCKS FROM SIMULATED DATA AS PER JUSTINIANO ET AL. (2011) 

 
Figure 17 shows the bands resulting from the 1,000 identification exercises on simulated 
data as well as the theoretically true IRFs. Our VAR-based approach is very successful in 
capturing the correct dynamics in the vast majority of the simulation runs. This gives us 
confidence that it may also be useful in a purely applied setting. 
 


