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IL PREMIO «GIORGIO ROTA» 

 

 

 

 

 

 

L’intento del Premio «Giorgio Rota» è di riprendere l’attività di ricerca annualmente condotta dal 

Comitato / Fondazione Giorgio Rota prima della sua inclusione nel Centro Einaudi, sulla relazione 

tra il pensiero e l’agire economico e un aspetto (ogni anno diverso)  del vivere in società, mantenendo 

vivo il ricordo e l’insegnamento dell’economista Giorgio Rota, uno dei primi animatori del Centro, 

prematuramente scomparso. 

 

Dal 2012 il Centro Einaudi ha dunque raccolto questa eredità rinnovando la formula della ricerca: è 

stato perciò istituito questo premio annuale dedicato a giovani ricercatori, con una qualificazione 

accademica nei campi dell’economia, sociologia, geografia, scienza politica o altre scienze sociali. I 

paper possono essere presentati sia in italiano che in inglese, e non devono essere stati pubblicati 

prima della data della Conferenza Rota, l’evento pubblico nel quale i vincitori hanno modo di 

presentare il loro lavoro. 

 

La prima edizione aveva per tema Contemporary Economics and the Ethical Imperative e la Conferenza 

Giorgio Rota si è tenuta presso il Centro Einaudi il 25 marzo 2013 con keynote speech di Alberto 

Petrucci, LUISS Guido Carli, Roma. 

 

La seconda edizione è stata su Creative Entrepreneurship and New Media con Conferenza Giorgio Rota 

presso il Centro Einaudi, 14 aprile 2014 e keynote speech di Mario Deaglio, Università di Torino. 

 

La terza edizione ha analizzato il tema The Economics of Illegal Activities and Corruption, con Conferenza 

Giorgio Rota presso il Centro Einaudi, 15 giugno 2015. Keynote speech di Friedrich Schneider, 

Johannes Kepler University (Linz, Austria). 

 

La quarta edizione verteva su The Economics of Migration. Il 20 giugno 2016 si è tenuta la Conferenza 

Giorgio Rota presso il Campus Luigi Einaudi, in collaborazione con FIERI. Keynote speech di 

Alessandra Venturini, Università di Torino. Dal 2016 inoltre il Premio è sostenuto dalla Fondazione 

CRT. 

 

La quinta edizione trattava di Economic Consequences of Inequality, e i saggi vincitori sono stati presentati 

alla Conferenza Giorgio Rota del 4 maggio 2017, tenutasi presso il Campus Einaudi in collaborazione 

con il Dipartimento di Economia e Statistica “Cognetti de Martiis”. L’Introduzione è di Andrea 

Brandolini, Banca d’Italia. 
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La sesta edizione del Premio è incentrata sul tema The Economics of Health and Medical Care. I paper 

vincitori sono stati presentati alla Conferenza Giorgio Rota tenutasi il 1° giugno 2018 presso il 

Campus Einaudi, in collaborazione con il Dipartimento di Economia e Statistica “Cognetti de 

Martiis”. L’Introduzione è di Fabio Pammolli, Politecnico di Milano. 

 

La settima edizione del Premio è incentrata sul tema Rural Economies, Evolutionary Dynamics and New 

Paradigms. I paper vincitori, riportati qui, sono stati presentati alla Conferenza Giorgio Rota il 6 

maggio 2019 presso il Campus Einaudi, in collaborazione con il Dipartimento di Economia e 

Statistica “Cognetti de Martiis”. Gli autori sono introdotti da un intervento di Donatella Saccone, 

docente di Economia politica all’Università di Scienze gastronomiche di Bra. 

 

Digital Transformation: Analysis of Economic Impact and Potential è il titolo dell’ottava edizione del Premio. 

I paper vincitori sono stati presentati alla Conferenza Giorgio Rota l’11 maggio 2020 che a causa della 

pandemia da Covid si è tenuta online, in collaborazione con il Dipartimento di Economia e Statistica 

“Cognetti de Martiis”. Gli autori sono stati introdotti alla Conferenza e nel volume da un intervento 

di Pietro Terna, ex Professore ordinario di Economia dell’Università di Torino e consigliere Centro 

Einaudi. 

 

La nona edizione del Premio è stata sul tema Main Economic Tendencies in the Contemporary World Economy. 

I paper sono stati presentati il 26 maggio 2021 alla Conferenza Giorgio Rota che si è ancora tenuta 

per via telematica. Gli autori sono introdotti nel volume da un con tributo di Jack Birner, Università 

di Trento e Comitato scientifico del Centro Einaudi. 

 

La decima edizione del Premio aveva per titolo Labor, value, robots. I paper vincitori, durante la 

conferenza tenutasi il 18 maggio 2022 al Campus Luigi Einaudi, sono stati presentati da Elisabetta 

Ottoz – direttrice del Dipartimento di Economia e Statistica “Cognetti de Martiis” dell’Università di 

Torino – che introduce anche questo volume. 

 

Urban Economies as Complex Systems è il titolo dell’undicesima edizione del Premio, i cui vincitori – Luca 

Favero, Ilaria Malisan, Giacomo Rosso e Léa Bou Sleiman – sono stati premiati in occasione della XI 

Giorgio Rota Conference il 30 maggio 2023 al Campus Luigi Einaudi. Il volume che raccoglie i saggi 

vincitori è introdotto da Francesca Silvia Rota dell’Università di Torino IRCrES CNR. 

 

I paper vincitori della dodicesima edizione del Premio – presentati alla Conferenza Giorgio Rota 

tenutasi il 15 maggio 2024 al Campus Luigi Einaudi – sono raccolti in questo volume, dal titolo Climate 

Economics and (its) Knowledge. I saggi di Lorenzo Sileci, Alessandra Testa e Konstantin Boss, e Costanza 

Tomaselli sono introdotti da una presentazione di Silvana Dalmazzone del Dipartimento di 

Economia e Statistica “Cognetti de Martiis” dell’Università di Torino. 

 

**** 
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THE «GIORGIO ROTA» AWARD 

 

 

 

 

 

 

The intent of the «Giorgio Rota» Best Paper Award is to resume the research activity annually conducted by the 

Giorgio Rota Committee/Foundation before its inclusion in the Centro Einaudi. The focus is on the relationship 

between economic thought and action and a different aspect of living in society, keeping alive the memory and teaching of 

economist Giorgio Rota, one of the early members of the Centro, who died prematurely. 

 

Since 2012, the Centro Einaudi has therefore taken up this legacy by renewing the research formula: this annual prize 

dedicated to young researchers with an academic qualification in the fields of economics, sociology, geography, political 

science or other social sciences has therefore been established. Papers may be submitted either in Italian or English, and 

must not have been published before the date of the Rota Conference, the public event at which the winners have the 

opportunity to present their work. 

 

The first edition’s theme was Contemporary Economics and the Ethical Imperative and the Giorgio Rota 

Conference was held at the Centro Einaudi on 25 March 2013 with keynote speech by Alberto Petrucci, LUISS 

Guido Carli, Rome. 

 

The second edition, was on Creative Entrepreneurship and New Media with Conference Giorgio Rota at Centro 

Einaudi, 14 April 2014 and keynote speech by Mario Deaglio, University of Turin. 

 

The third edition analysed the topic The Economics of Illegal Activities and Corruption, with Giorgio Rota 

Conference at Centro Einaudi, 15 June 2015. Keynote speech by Friedrich Schneider, Johannes Kepler University 

(Linz, Austria). 

 

The fourth edition focused on The Economics of Migration. The Giorgio Rota Conference was held on 20 June 

2016 at the Einaudi Campus, in cooperation with FIERI. Keynote speech by Alessandra Venturini, University of 

Turin. Since 2016, the Prize has also been supported by the Fondazione CRT. 

 

The fifth edition dealt with Economic Consequences of Inequality, and the winning essays were presented at the 

Giorgio Rota Conference on 4 May 2017, held at the Einaudi Campus in collaboration with the Department of 

Economics and Statistics ‘Cognetti de Martiis’. Introduction by Andrea Brandolini, Bank of Italy. 

 

The sixth edition of the Prize, held in 2018, focused on the theme: The Economics of Health and Medical Care. 

The winning papers were presented at the Giorgio Rota Conference held on 1 June 2018 at the Einaudi Campus, in 

collaboration with the ‘Cognetti de Martiis’ Department of Economics and Statistics. Introduction by Fabio Pammolli, 

Politecnico of Milan. 
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The seventh edition of the Prize focuses on the theme Rural Economies, Evolutionary Dynamics and New 

Paradigms. The winning papers were presented at the Giorgio Rota Conference on 6 May 2019 at the Einaudi 

Campus, in collaboration with the ‘Cognetti de Martiis’ Department of Economics and Statistics. Introductory talk by 

Donatella Saccone, Professor of Political Economy at the University of Gastronomic Sciences in Bra. 

 

Digital Transformation: Analysis of Economic Impact and Potential is the title of the eighth edition of the 

Award. The winning papers were presented at the Giorgio Rota Conference on 11 May 2020, which was held online 

due to the Covid pandemic, in collaboration with the ‘Cognetti de Martiis’ Department of Economics and Statistics. 

The authors were introduced at the conference and in the volume by a speech by Pietro Terna, former Professor of 

Economics at the University of Turin and Centro Einaudi advisor. 

 

The ninth edition of the Award was on the theme Main Economic Tendencies in the Contemporary World 

Economy. The papers were presented on 26 May 2021 at the Giorgio Rota Conference online. The authors are 

introduced in the volume by a contribution by Jack Birner, University of Trento and Centro Einaudi Scientific 

Committee. 

 

The tenth edition of the Prize was entitled Labor, value, robots. The winning papers, during the conference held on 

18 May 2022 at the Einaudi Campus, were presented by Elisabetta Ottoz – Director of the Department of Economics 

and Statistics ‘Cognetti de Martiis’ at the University of Turin – who also introduced this volume. 

 

Urban Economies as Complex Systems is the title of the eleventh edition of the Giorgio Rota Prize, whose 

winners – Luca Favero, Ilaria Malisan, Giacomo Rosso and Léa Bou Sleiman – were awarded at the XI Giorgio 

Rota Conference on 30 May 2023 at the Luigi Einaudi Campus. The volume collecting the winning essays is introduced 

by Francesca Silvia Rota of the University of Turin and IRCrES CNR. 

 

The winning papers of the twelfth edition of the Prize – presented at the Giorgio Rota Conference held on 15 May 

2024 at the Luigi Einaudi Campus – are collected in this volume, entitled Climate Economics and (its) 

Knowledge. The essays by Lorenzo Sileci, Alessandra Testa and Konstantin Boss, and Costanza Tomaselli are 

introduced by Silvana Dalmazzone Department of Economics and Statistics ‘Cognetti de Martiis’ at the University of 

Turin. 
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CHI ERA GIORGIO ROTA 

 

Giorgio Rota (1943-1984) è stato professore di Economia politica 

presso l’Università di Torino e consulente economico. Per il Centro 

Einaudi, è stato coordinatore agli studi e membro del comitato di 

direzione di «Biblioteca della libertà». 

Le sue pubblicazioni scientifiche abbracciano diversi temi: l’economia 

dei beni di consumo durevoli, l’economia del risparmio, il mercato 

monetario e finanziario, l’inflazione e la variazione dei prezzi relativi, il 

debito pubblico. Ricordiamo tra esse: Struttura ed evoluzione dei flussi 

finanziari in Italia: 1964-73 (Torino, Editoriale Valentino, 1975); 

L’inflazione in Italia 1952/1974 (Torino, Editoriale Valentino, 1975); nei 

«Quaderni di Biblioteca della libertà», Passato e futuro dell’inflazione in Italia 

(1976) e Inflazione per chi? (1978); Che cosa si produce come e per chi. Manuale italiano di microeconomia, con 

Onorato Castellino, Elsa Fornero, Mario Monti, Sergio Ricossa (Torino, Giappichelli, 1978; seconda 

edizione 1983); Investimenti produttivi e risparmio delle famiglie (Milano, «Il Sole 24 Ore», 1983); Obiettivi 

keynesiani e spesa pubblica non keynesiana (Torino, 1983). 

Tra le sue ricerche va particolarmente citato il primo Rapporto sul risparmio e sui risparmiatori in Italia 

(1982), risultato di un’indagine sul campo condotta da BNL-Doxa-Centro Einaudi, le cui conclusioni 

riscossero notevole attenzione da parte degli organi di stampa. Da allora il Rapporto sul risparmio, ora 

Indagine sul risparmio, continua a essere pubblicato ogni anno. 

 

**** 

 

GIORGIO ROTA’S PROFILE 

 

Giorgio Rota (1943-1984) was a professor of Political Economy at the University of Turin and an 

economic consultant. For the Centro Einaudi, he was coordinator of the Study Committee and 

member of the editorial board of «Biblioteca della libertà». 

His scientific publications cover various topics: the economics of consumer durables, the economics 

of savings, the money market and the financial market, inflation and public debt. Among his 

publications: Struttura ed evoluzione dei flussi finanziari in Italia: 1964-73 (Turin, Editoriale Valentino, 

1975); L’inflazione in Italia 1952/1974 (Turin, Editoriale Valentino, 1975); in «Quaderni di Biblioteca 

della libertà»: Passato e futuro dell’inflazione in Italia (1976) and Inflazione per chi? (1978); Che cosa si produce 

come e per chi. Italian Handbook of Microeconomics, with Onorato Castellino, Elsa Fornero, Mario Monti, 

Sergio Ricossa (Turin, Giappichelli, 1978; second edition 1983); Productive Investments and Household 

Savings (Milan, «Il Sole 24 Ore», 1983); Keynesian Objectives and Non-Keynesian Public Expenditure (Turin, 

1983). Particular mention must be made of the first Report on Savings and Savers in Italy (1982), the result 

of a field survey conducted by BNL-Doxa-Centro Einaudi, whose conclusions received considerable 

attention from the press. Since then, the Savings Report, now Report on the Italians’ Savings and Financial 

Choices, has continued to be published every year. 
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SILVANA DALMAZZONE 
 

INTRODUCTION 
 

 
 
 

Thank you for inviting me to open this year’s Giorgio Rota Conference dedicated to climate 

change economics and its knowledge.  

 

What I’m going to do is to offer you a feeling of what’s inside the larger, fast-evolving box of 

climate change economics. A very recent survey, conducted in 2023 by the Policy Institute of 

the King’s College in London as part of the PERITIA Horizon project, investigating public 

perceptions about climate change in six countries in Europe plus the UK, confirms that there 

are very wide misperceptions on the scientific knowledge of climate changes.  

 

Regarding the survey’s question “to the best of your knowledge, what percentage of climate 

scientists have concluded that human-caused climate change is happening?”, we see that 

according to a large sample of interviewed Europeans the average proportion of scientists 

convinced that climate change is taking place and is human-induced is around 68%: 

enormously lower than the reality which is today of 99.9%.  

 

FIGURE 1 • REPLIES TO PERITIA SURVEY’S QUESTION “TO THE BEST OF YOUR KNOWLEDGE, WHAT 

PERCENTAGE OF CLIMATE SCIENTISTS HAVE CONCLUDED THAT HUMAN-CAUSED CLIMATE 

CHANGE IS HAPPENING?” 

 

 
Source: https://peritia-trust.eu/. 

https://peritia-trust.eu/


 QUADERNO GIORGIO ROTA N. 12 – SILVANA DALMAZZONE 

   

12 

From another question it emerges that, on average, three-quarters of people, about 74%, say 

that climate change is mainly caused by human activities, which means that 26% think that it is 

not. Things go a little bit better in Italy, where the percentage is about 82%. Surprisingly, they 

go worse in Northern European countries, with 61% of the Norwegian respondents being 

convinced climate change is human-caused.  

 

Despite remaining misperception and lack of knowledge, the large majority of people are 

however worried about the impact of global warming on future generations: 81% of people on 

average, according to PERITIA’s survey. The answers also show that 80% of interviewed 

individuals say they are worried about the impact of global warming on humanity in general. 

Most people also think climate change is harmful now or will be harmful within the next 10 

years. And a remarkable 62% of people say so not just about the world, including developing 

countries, but also about their own country. 

 

FIGURE 2 • REPLIES TO PERITIA’S SURVEY’S QUESTION “WHEN, IF EVER, DO YOU THINK 

CLIMATE CHANGE WILL START TO HARM HUMANITY?” 

 
 

Source: https://peritia-trust.eu/. 

 

So, the perception is that there is a serious problem. Yet, actions to mitigate climate change 

don’t match the public perception of how serious the problem is under current policies. There 

is a remarkable emission gap between the current policies scenario and the emission pathways 

that would keep global warming under the stated objectives of the last ten years’ international 

agreements (Figure3).   
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FIGURE 3 • GLOBAL GHG EMISSIONS UNDER DIFFERENT SCENARIOS AND THE EMISSIONS GAP  

IN 2030 AND 2035 (MEDIAN ESTIMATE AND TENTH TO NINETIETH PERCENTILE RANGE) 

 

 
 

Source: UNEP, 2023.  

 

 

The light turquoise line shows the trajectory we need to remain within +2°C of warming (Paris 

Agreement). The orange trajectory is the one to stay within the +1.8°C warming. And the last 

one, the dark turquoise one, is the +1.5°C trajectory. Under current policies, we are heading in 

the graph far higher than all these three trajectories. This means that the emission gap is pretty 

large and remains larger even with the new pledges made by countries under the Glasgow 

Climate Pact, plus all the officially announced mitigation pledges for 2030, which were added 

later on.  

 

Until last year, the Glasgow Climate Pact plus all the official 2030 mitigation pledges reduced 

the projected emissions to 2030 indicated in the previous unconditional Nationally Determined 

Contributions (NDCs) by only 7.5%, whereas staying within the Paris Agreement’s objectives 

of +2°C and +1.8°C would require a reduction of 30% with respect to previous pledges. The 

Glasgow objective of +1.5°C of warming would require a 55% reduction. Indeed, we are 

moving very, very shyly.  
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So, why so little? Why so late? Economics may help. Climate change economics does make an 

effort to help us understand why.  

 

The first reason we are doing so little and going so slowly is obviously the real cost of leaving 

fossil fuels in terms of jobs, purchasing power, and welfare effects.  

 

A second important answer is that climate change is a global problem, but damage is disjoint 

from the location of emission sources. The incentive for individuals, and even for individual 

countries, to refrain from emitting greenhouse gases is very small, and the effort of one country 

in isolation can be nullified by unmitigated growth of emissions in another country. In addition, 

countries that unilaterally engage and adopt stricter regulations may face carbon leakage and 

lose competitiveness in international markets. 

 

A third reason why it is so difficult to act on mitigating climate change has to do with the fact 

that this particular environmental issue has very intricate distributive implications, between the 

North and the South and between the West and the rest of the world. Much more intricate, for 

example, than the ozone layer problem, which we managed to tackle quite effectively and 

quickly through international cooperation. Industrialized Western countries are mostly 

responsible for the cumulative emissions that over the last 150 years caused today’s greenhouse 

gas concentrations in the atmosphere. Furthermore, developing countries are going to suffer 

most and first from the impacts. So, the developing world has so far been very reluctant to 

accept restrictions. But many of today’s richest countries resist the idea of bearing all the costs 

without the participation of at least those giant Asian countries that now challenge Western 

economies on world markets.  

 

The last answer that climate change economics is putting forward to explain why it is so 

difficult to act, pertains to human psychology. Human psychology has an incurable bias 

towards the present. Decades of behavioral and experimental economics have consistently 

found evidence of time inconsistency and the use of irrationally high discount rates in people’s 

welfare. In making decisions with impacts that are obviously adverse to people’s welfare, we 

know that individuals are willing to accept smaller immediate rewards over larger delayed 

rewards, even when the delayed rewards are objectively more valuable. Irrationally high 

discount rates, or the dictatorship of the present, emerge in individual preferences, corporate 

decisions, and political processes. For example, we have to force compulsory saving for 

retirement. There are issues of competitiveness that induce very short-sighted corporate 

strategies. Even in political processes, which is where a collective and long-term perspective 

should prevail, there is a structure of rewards that has a short-term view and the pressure from 

financial markets is high.   
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Therefore, if we humans find it so difficult even to act rationally in front of our now-to-do 

questions, such as doing our homework, let’s imagine how it works when facing a massive 

ethical transformation of our socioeconomic system.  

Nevertheless, there is a lot that climate change economics can do for us in matter of designing 

and evaluating climate policies. 

 

First, cost-benefit analyses: we need to know the cost of carrying on business-as-usual and 

bearing the impacts, and on the other hand the cost of doing what it takes to avoid (or limit) 

those impacts. Economic assessments of the forecasted socioeconomic impacts of climate 

change rely on several different approaches. Older studies tend to be enumerative: they 

consider the largest feasible number of expected impacts in terms of their physical units, 

multiply them by the evaluated unit cost, and add them up. 

 

Econometric studies make a step forward, allowing us to take into account interactions (for 

example, due to price changes) and the dynamic aspect of socioeconomic impacts of climate 

change in the future. A limitation is that they assume that differences in climate existing now 

between different places, at different latitudes, are a good proxy for differences in climate that 

will emerge in the future. One advantage is that they do not have to assume anything about, for 

example, adaptation behaviors, because they observe what has actually taken place over the past 

in different parts of the world. 

 

More and more popular in recent years are also the socioeconomic valuations of the impacts of 

climate change based on computable general equilibrium (CGA) models. These have the 

advantage of being able to look at the whole economic system and include dynamic changes 

and interactions between prices and sectors. One issue is that they tend to be based on national 

accounts, and hence they tend to omit impacts on human health and on ecosystems. Also, they 

tend to express the results in terms of percentage loss of consumption or GDP, leaving aside 

other kinds of welfare impacts.  

 

Another important part of the literature relies on integrated assessment models (IAMs), 

simplified mathematical descriptions of reality that integrate knowledge from two or more 

disciplinary domains (e.g., climate sciences and economics). They constitute the base, for 

example, of the evaluations included in the IPCC assessment records. 

 

Lastly, elicitation studies are simply evaluations built on large sets of interviews with experts, 

investigating and statistically describing their opinions on the dimensions of expected future 

impacts of climate change.  
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Recent meta-analyses, for example the one published by Tol (2024) on Energy Policy, produces 

estimates of average negative impacts from all these different approaches and estimates a GDP 

impact from climate change by 2050 in the range of –2% and –3% losses, if we stay within a 

+2.5°C increase of the temperature; up to –11% by 2100, assuming we are going to stay under 

a +3.0°C degrees threshold by that time.  

 

FIGURE 4 • THE ECONOMIC IMPACT OF CLIMATE CHANGE FOR A 2.5 °C WARMING RELATIVE TO 

PRE-INDUSTRIAL TIMES FOR COUNTRIES AS A FUNCTION OF THEIR INCOME (TOP PANEL) AND 

TEMPERATURE (BOTTOM PANEL). 

 

 
 

Source: Tol, 2024: 11. 
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These results are very sensitive to discount rates, and they generally do not include catastrophic, 

acute risks (such as those from extreme weather events), but only the chronic impact of raising 

temperatures on factors productivity. Estimates by insurance companies, which do take into 

account catastrophic risks, tend to be much higher. 

 

A recent estimate by Swiss Re Institute1 points a loss of 14% of global GDP by 2050 under a 

+2.6°C warming scenario and of –18% of global GDP by 2050 under a +3.2°C scenario, and a 

loss for the European Union between 8 and 10.5% of GDP by 2050.  

 

Certainly, these are global average values. If we look at how these losses are going to be 

distributed across the world, we find very large disparities between high-income countries and 

developing countries. Figure 4 (upper diagram), which on the x axis measures GDP per capita 

and on the y axis the percentage losses of GDP, shows how the losses would be scattered. 

Countries of the Global South are going to suffer up to –20, –25, and –30% loss of GDP. 

Poorest countries are going to suffer impacts much higher than the world average. An 

analogous result emerges from the bottom diagram, showing the correlation between expected 

percentage losses of GDP and a country's average temperature. Again, cooler countries (the 

Global North, to simplify a bit) tend to have smaller losses or even moderate gains, whereas 

warmer and tropical countries suffer much more severe losses.  

 

Mitigation can make a difference. For Europe, decarbonization policies limiting warming to 

+2°C degrees would reduce the welfare losses by 70% compared to a +3.0 °C degree scenarios, 

while limiting warming to +1.5 °C would lower welfare losses by 90%. We are late and slow, 

but still on time to avoid the worst. 

 

Decarbonizing our economies involves mitigation direct costs as well as technological, sectoral, 

and macroeconomic welfare costs, whose assessment relies, again, on an array of methods and 

models. An important one is the marginal abatement cost of carbon (MACC) curves. MACC 

curves look like the diagram in Figure 5. The diagram estimates the marginal cost of CO2e 

emission abatement by technology, which is the height of the column, associated with the 

relative reduction potential, which is measured by the width of each column. All the 

technologies that you see in the lower, left-hand part of the diagram are associated to negative 

costs. It means that on the lifetime scale of these technologies the mitigation cost is negative, 

i.e., the investment would imply a net saving. Almost a quarter of the total abatement potential 

required to limit global warming under +2°C could be gained through measures with a zero or 

negative net life cycle cost. These include, for instance, more efficient lighting systems, motor 

system efficiency, installation of retrofits, and so on. Conversely, the technologies in the upper, 

 
1 https://www.swissre.com/media/press-release/nr-20210422-economics-of-climate-change-risks.html 
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right-hand part of the diagram cost more and more. Technological change is moving fast, and 

today's most costly technologies that we need to adopt to reach the +2°C objective have a cost 

of around 40 euro per ton of avoided CO2e emissions. 

 

FIGURE 5 • GLOBAL GHG ABATEMENT COST CURVE BEYOND BUSINESS-AS-USUAL (BAU) - 2030/US 

ENERGY SYSTEM MARGINAL ABATEMENT CURVE 

 
Source: McKinsey, 2009: 7. 

 

The diagram in Figure 6 comes from the last the 6th assessment report of IPCC, which offers 

an overview of mitigation options and their estimated ranges of costs and potential in 2030. 

 

FIGURE 6 • GLOBAL MITIGATION COSTS FOR 2015 TO 2100 IN NET PRESENT VALUE (NPV) 

DISCOUNTED AT A 5% DISCOUNT RATE AND EXPRESSED AS A SHARE OF THE BASELINE ECONOMY 

 

 
 

Source: Clarke et al., 2014: 450. 
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The results in general equilibrium models show, not surprisingly, that both consumption and 

GDP losses increase as our steady state greenhouse gases concentration goal gets more 

stringent. Costs would be high for a 430-480 ppm target by 2100, implying, by the end of the 

century, between 2.0 and 5.7 GDP percentage loss. Slightly more in terms of consumption 

(between –2.2% and –5.8%). 

 

These are mitigation costs calculated as if we started to reduce global emissions right now. But 

anyhow, what emerges from a pretty large set of literature is that the global economic benefit of 

limiting warming to +2°C is going to exceed the cost of mitigation in most of the studies 

assessed by the IPCC report, unless climate damages are going to materialise at the lower end 

of the range of possibilities, and unless future damages are discounted at very high rates. 

 

Of course, all these estimates are very sensitive to the discount rate used. Economic models 

also tell us that mitigation costs increase sharply with delays in mitigation: on average, net 

mitigation cost increases by approximately 40% for each decade of delay in the moment global 

emissions will peak and start decreasing. They also tell us how much delay we can afford before 

missing the current climate targets, and how much costlier would it be to start later and 

accelerate with more stringent policies in subsequent years.  

 

Another part of the climate change literature looks at adaptation. If we also include adaptation, 

then we can further reduce the losses. Mitigation and adaptation must be coordinated as they 

compete in the use of scarce resources. Economic theory tells us that the optimal level of 

adaptation is the one that equalises the marginal adaptation cost and the marginal adaptation 

benefits, i.e., where the adaptation curve has a slope of 45 degrees (Figure 7). But again, 

quantifying adaptation raises a lot of conceptual issues. For example, how should we account 

for the costs of adaptation if it also has other benefits beyond mitigating climate change, such as 

health benefits or welfare in other forms? What if it would have taken place anyhow? So, a 

problem of additionality does emerge.  

 

Nevertheless, certainly also adaptation makes a difference. In the EU, for example, mitigating 

climate change to +1.5°C would half the damages from coastal and river floods, just to take 

one of the many forms of impact. Adding adaptation would reduce residual damages from river 

floods by 40 times and by 20 times those from coastal flooding.  
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FIGURE 7 • GRAPHICAL REPRESENTATION OF LINK BETWEEN THE COST OF ADAPTATION  

(ON THE X-AXIS) AND THE RESIDUAL COST OF CLIMATE CHANGE (ON THE Y-AXIS).  

The left panel represents a case where full adaptation is possible, while the right panel represents 

a case in which there are unavoidable residual costs 

 

 
 

Source: Chambwera et al., 2014: 953. 

 

Setting objectives and setting targets is another crucial question. Where do we want to go? How 

ambitious need we to be in trying to mitigate climate change? Standard economics tells us that 

we should choose decarbonization targets so as to equalise marginal benefit and marginal 

damage. This would require, in practise, knowledge of marginal mitigation costs up to the 

different moments in time, of marginal economic value of impacts, and a collective choice of 

the discount rate to be used. All this kind of knowledge, which is, as we have seen, very difficult 

to quantify, makes it difficult to identify analytically at which concentration level, and therefore, 

given the decay rate, at which emission level, the discounted damage of an additional unit of 

GHG gases equals the cost of containment. This has been the object of debate in all 

international climate change conferences.  

 

Eventually, what has been done in the real world is mostly to revert and define the objectives in 

terms of warming. We first need to decide whether, given the forecasted impact, we aim to stay 

within +2°C or +1.5°C warming. Then we convert those objectives into corresponding 

concentrations and thus of remaining carbon budget: to have a 50% chance of staying below 

1.5°C, we can only emit 250 billion more tonnes of carbon. That’s just six years of our current 
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emissions. For a 50% chance of staying below 2°C, the world could emit 1150 billion tonnes, 

around 28 years of current emissions.  

 

Uncertainty plays a fundamental role in this, yet we often disregard it. The acceptable 

probability of meeting (or missing) the desired outcome makes a huge a difference, too. When 

we talk about staying within a +2.0°C scenario, we always assume to stay within that objective 

with a given probability. Limiting global warming to +2°C with a 67% probability, or with a 

80% probability or with 50% probability, implies a dramatic change in the remaining carbon 

budget.  

 

Finally – but I will leave this to the presentation of this year’s papers winning the 2024 Giorgio 

Rota Award – climate change economics offers a lot also in terms of designing policy 

instruments, such as carbon pricing.  

 

In conclusion, a final key point is the question of tackling distributive issues. The previous large 

scale societal transformations, led by the 19th century industrial revolution and the digital 

revolution of the last few decades, have been originated by technological change and have been 

driven by market forces. The ecological transition represents the first time we are facing the 

task of designing, implementing, and governing a deep, deliberate structural change that is not 

driven by market forces but will have to be driven by collective action. Also, this structural 

change is going to take place in a short period: the next 9-10 years, up to 2030, are going to be 

decisive. These necessary transformations will have no chance of success if they fail to build 

around them a sufficient strong legitimacy. And this is not going to happen if we are not going 

to deepen our knowledge of the distributional consequences of climate change and climate 

change policies, in order to ascertain the political feasibility and foresee the necessary 

compensatory actions.  
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LORENZO SILECI 
 

CARBON PRICING WITH REGRESSIVE CO-BENEFITS:  
EVIDENCE FROM BRITISH COLUMBIA’S CARBON TAX  

 

 
 

1. INTRODUCTION 
 
The major sources of CO2 emissions are the fossil fuel combustion processes which also release 
toxic air pollutants, making climate change and air pollution complementary externalities. 
Policy efforts to control CO2 emissions by internalising the social cost of carbon are thus bound 
to give rise to significant health “co-benefits” associated with air quality improvements, with 
climate mitigation hailed as “the greatest global health opportunity of the 21st century” (Watts 
et al., 2015). Moreover, a substantial body of research has documented severe historical 
inequities in air pollution exposure across income and racial groups (Colmer et al., 2020; Jbaily 
et al., 2022), and recent work has reported the ambiguous impacts of market-based climate 
policy in closing these “environmental justice gaps” (Cain et al., 2024). In this paper, I jointly 
assess the air quality co-benefits and environmental justice implications of carbon taxation, 
leveraging as a case study the experience of the 2008 carbon tax in British Columbia, Canada.  
 
Given the relative scarcity of long-tenured carbon pricing schemes, it is unsurprising that 
empirical evidence of their causal impact on local air pollution co-benefits is sporadic, and 
mostly limited to cap-and-trade schemes (Deschenes et al., 2017; Hernandez-Cortes and Meng, 
2023) with fewer studies focusing on fuel taxes (Basaglia et al., 2023). On the contrary, there is 
a large and growing literature which, using theoretical insights (Parry et al., 2015) and simulation 
models (Knittel and Sandler, 2011; Zhang et al., 2021), has attempted to calculate the monetary 

 
Abstract. This paper examines the impacts of carbon taxation on air quality co-benefits and 
environmental justice. Using high-resolution data and a synthetic difference-in-differences strategy, I find 
that the 2008 carbon tax in British Columbia has reduced PM2.5 emissions by 5.2-10.9%. The flow of 
monetised co-benefits from climate policy is large, corresponding to 40-81% of annual carbon tax 
revenues. While pollution reductions arise for all citizens, the tax widens pre-existing disparities in 
pollution exposure across income and racial diversity categories. The distribution of co-benefits from 
market-based climate mitigation instruments may be regressive, requiring additional policies targeting 
environmental inequalities.  
 
Keywords. Carbon tax, air pollution, co-benefits, environmental justice  
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value of air pollution improvements due to carbon taxation and compare them with the cost 
of mitigation policies. In particular, net health co-benefits arising from carbon taxation are 
theorised to reach a high enough magnitude to partially or fully offset the mitigation costs for 
households at a national (Li et al., 2018; Shindell et al., 2016) and global (West et al., 2013; 
Vandyck et al., 2018) level, and may provide strong additional incentives for a swift transition 
to a low-carbon economy1. 
 
In light of the considerable size of projected air pollution co-benefits, it is fundamental to 
examine how carbon pricing policies may impact the spatial distribution of pollutants over 
affected populations, a theme also referred to as the “environmental justice question” (Banzhaf 
et al., 2019; Currie et al., 2023). While carbon taxation is expected to produce higher pollution 
reductions in areas with lower marginal abatement costs, this efficiency criterion is blind to 
equity considerations, and CO2 abatement is not necessarily perfectly correlated with the 
dispersion of air pollutants (Hernandez-Cortes and Meng, 2023; Cain et al., 2024). It is thus 
paramount to inspect whether carbon taxation presents efficiency-equity trade-offs in the 
distribution of realised co-benefits, evidence of which is not unidirectional in the environmental 
economics literature (Fowlie et al., 2012; Boyce and Pastor, 2013; Grainger and Ruangmas, 
2018; Shapiro and Walker, 2021; Currie et al., 2023; Sheriff, 2024).  
 
The 2008 British Columbian carbon tax, covering approximately 75% of the Canadian 
province’s CO2 emissions, was initially introduced at a rate of $10/tCO2, and sequentially 
ramped up by $5 per year until 2012, when it was frozen at $30/tCO2 until 2018. Importantly, 
no other Canadian Province introduced carbon pricing schemes between 2008 and 2018, when 
the tax was rolled out on a federal basis. I acquire high-resolution data on PM2.5 , based on a 
combination of satellite observations, geo-chemical models and ground-based monitoring 
stations, from Meng et al. (2019) and van Donkelaar et al. (2019), and combine them with 
granular socio-economic data at the Dissemination Area level2, retrieved from the Canadian 
Census at 5-year intervals between 2001 and 2016. I exploit this highly disaggregated dataset to 
assess the effect of the carbon tax on air pollution co-benefits and the dynamics of the 
environmental justice gap.  

 
1 Reductions in morbidity and mortality due to improvements in air quality are likely not to capture the full 
extent of the local pollution externality: a large body of research has linked air pollution to non-health 
outcomes (see Aguilar-Gomez et al., 2022, for a review). Studies have linked air pollution to negative 
educational outcomes (Ebenstein et al., 2016; Wen and Burke, 2022), increase in crime rates (Bondy et al., 
2020) and suicides (Persico and Marcotte, 2022), reductions in labour productivity (Graff Zivin and Neidell, 
2012), and in housing prices (Sager and Singer, 2024; Freeman et al., 2019), suggesting that any attempt at 
quantifying the monetary impact of co-benefits based on health outcomes alone would, at best, provide a 
lower bound of the beneficial consequences of air quality improvements.  
2 Corresponding roughly to US Census tracts. 
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The central result of the paper is that the carbon tax has resulted in statistically significant 
reductions in PM2.5 concentrations, with a lower bound average estimate of -0.36 μg/m3 and 
an upper bound average estimate of -0.89 μg/m3, corresponding to a 5.2-10.9% reduction in 
particulate matter concentrations with respect to pre-treatment average levels. Importantly, this 
result is obtained by moving away from traditional difference-in-differences estimation, in light 
of a violation of the foundational parallel trends assumption: particulate matter trends between 
British Columbian and control Dissemination Areas diverge prior to the implementation of the 
carbon tax, thereby potentially biasing DID estimates. I rely on a family of estimators related 
to the synthetic control method (SCM) for comparative case studies (Abadie and Gardeazabal, 
2003; Abadie, 2021), employing in particular the synthetic difference-in-differences (SDID) 
estimator by Arkhangelsky et al. (2021) as my preferred methodology.  
 
I subsequently inspect the efficiency-equity trade off, examining whether air pollution 
reductions arise heterogeneously within British Columbian metropolitan areas. I split the pool 
of treated units in quintiles of pre-existing pollution, population density, median income levels 
and racial diversity, and estimate the impact of the tax on PM2.5 reductions for each quintile of 
these characteristics. While Pareto-optimal in the welfare dimension, with reductions in 
pollution across the board, the carbon tax is regressive in the environmental justice dimension: 
reductions are 1.6-2.2 times higher in the bottom quintile of pre-treatment air pollution, 
population density and racial diversity compared to the top quintile, and 1.7 times higher in the 
top median income quintile compared to the bottom quintile.  
 
Finally, I convert my estimates of particle pollution reductions into mortality reductions3 and 
associated monetary gains, relying on the concept of the Value of a Statistical Life4. The median 
monetary health gains appear to be large, in the order of $88-402/year per capita. The central 
estimate of $198 is almost double the $115.50 per capita Low-Income Climate Action Tax 
Credit, the carbon tax governmental rebate accruing to low-income individuals to mitigate the 
cost of carbon pricing. The total annual health gains are comparable to annual carbon tax 
revenues at its inception (Ministry of Finance, 2009) and amount to 40-81% of annual tax 
revenues at maturity (Ministry of Finance, 2013). Health gains exhibit a positive spatial 
correlation with income, corroborating the evidence on the increase in the environmental 
justice gap.  
 
This paper contributes to the literature on three main fronts. First, I extend the recent evidence 
on the impact of carbon pricing on air pollution co-benefits, by providing the first study with 

 
3 Exploiting hazard rates adapted from the environmental health and epidemiology literature (Lepeule et al., 
2012; Krewski et al., 2009).  
4 Following Fowlie et al. (2019) and Carozzi and Roth (2023).  
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an explicit empirical focus on carbon taxation instead of the frequently examined cap-and-trade 
schemes and fuel tax increases (Hernandez-Cortes and Meng, 2023; Basaglia et al., 2023). I 
overcome known spatial and temporal selection problems connected with the use of sparse air 
quality monitors (Grainger and Schreiber, 2019) by relying on two sets of remotely sensed PM2.5 

data (Meng et al., 2019; van Donkelaar et al., 2019) which provide full coverage of the spatial 
and temporal extent of my dataset. Further, I dispel the notion that the carbon tax has resulted 
in gasoline to diesel fuel substitution (Saberian, 2017), instead highlighting expected reductions 
in both fuels’ total demand after the tax (Rivers and Schaufele, 2015; Bernard and Kichian, 
2019). Moreover, by exploiting highly disaggregated census information on commute mode, I 
provide evidence on additional mechanisms underlying the air quality improvements: BC 
residents substitute high emissions trips with public transport and active commute modes 
following the implementation of the tax. My results are thus also consistent with the findings 
of Pretis (2022), who found that the 2008 carbon tax reduced CO2 emissions in the 
transportation sector alone.  
 
The second contribution regards the growing literature on the relationship between 
environmental policies and equity. I present the first ex post analysis of the effects of a carbon 
tax on the environmental justice (EJ) gap. I find that pricing carbon, while giving rise to 
widespread air quality co-benefits, may do so disproportionately with respect to pre-existing 
levels of air pollution, income, population density and racial diversity. My estimates thus add a 
data point to the nascent literature on ex post empirical evaluation of EJ effects from climate 
policy, which has so far reported mixed evidence (Cain et al., 2024). This result counterbalances 
some of the recent evidence of EJ implications of market-based instruments (Hernandez-
Cortes and Meng, 2023), and highlights the potential for coupling climate mitigation policy 
with instruments targeting air pollution specifically, which have been shown to be effective in 
closing EJ gaps (Currie et al., 2023; Sager and Singer, 2024). While it is noteworthy that climate 
policy can give rise to significant air pollution and associated health co-benefits due to 
complementarities alone, improvements along the equity axis are not a necessary implication 
of efficiency-focussed instruments. In order to obtain the greatest gains across multiple 
independent policy targets, multiple policy instruments may be needed, a notion that 
economists have considered since the 1950s (Tinbergen, 1952).  
 
Lastly, I contribute to the environmental policy evaluation literature by showing how the 
traditional DID estimator is susceptible of producing biased estimates, due to substantially 
diverging pre-treatment trends across treatment and control units. I solve this concern by 
exploiting SCM and the newly introduced SDID estimator (Arkhangelsky et al., 2021) and 
exploiting, unlike recent studies in environmental policy evaluation (e.g. Andersson, 2019; 
Leroutier, 2022; Basaglia et al., 2023) a subnational level treatment and a highly granular 
framework. In my setting, with multiple treated units and a large number of control units to 
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draw synthetic counterfactuals from, both the SCM and SDID perform well in addressing 
concerns about diverging pre-treatment trends and identify robust estimates of the impact of 
the carbon tax on PM2.5 levels, improving substantially upon traditional estimators and 
aggregate policy settings.  
 
The remainder of the paper begins with a description of the carbon tax and the data sources in 
Section 2. In Section 3, I present the identification strategy, followed by the main results in 
Section 4. Section 5 shows the consistency of the main analyses to alternative specifications 
and mechanisms underlying the results are presented in Section 6. I examine environmental 
justice dynamics in Section 7, and estimate mortality reductions and associated monetary health 
gains in Section 8. Section 9 concludes the paper.  
 
 
2. POLICY CONTEXT, DATA AND DESCRIPTIVE STATISTICS 

2.1. The 2008 British Columbian Carbon Tax 
 

The introduction of the British Columbia (BC) carbon tax was formally announced in the 
provincial budget plan in February 2008, catching the public off guard due to the 
unexpected nature of this move by the Liberal government (Harrison, 2012; Ahmadi et al., 
2022). The policy aimed to reduce emissions by a minimum of 33% below 2007 levels by 
2020 (Azevedo et al., 2023). Implemented on July 1, 2008, the initial tax rate was set at 
$10/tonne CO2eq and increased by $5/tonne CO2eq annually until it reached $30 in 2012, 
establishing one of the highest carbon prices globally at the time (Murray and Rivers, 2015; 
Azevedo et al., 2023). The carbon tax rate remained at $30 until 2018, when it increased to 
$35, with a subsequent annual increment of $5 anticipated until it reached $50/tonne in 
2022. The tax, applicable to all fossil fuel purchases in BC, accounts for approximately 77% 
of the province’s total greenhouse gas (GHG) emissions, underscoring the comprehensive 
scope of the policy (Murray and Rivers, 2015; Rivers and Schaufele, 2015; Ahmadi et al., 
2022; Azevedo et al., 2023). Notably, the most affected sector is transportation, which 
contributed to 43.9% of the province’s total CO2 levels in 2007; exemptions cover exported 
fuels, non-combustion GHGs (e.g. landfill methane), and emissions generated outside BC5.  

 
A key aspect of implementing the BC carbon tax is its commitment to revenue neutrality, 
serving as a crucial mechanism to secure public support and mitigate resistance to additional 
taxation, a notable challenge in the execution of carbon pricing schemes (Carattini et al., 

 
5 This excludes a significant portion of air transportation and non-metallic mineral manufacturing emissions. 
Additionally, non-fossil fuel sources like fugitive emissions and chemical processes are exempted, 
broadening the range of exclusions (Azevedo et al., 2023).  
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2017; Carattini et al., 2019)6. The revenue-neutral design of the tax involved returning funds 
to consumers and businesses through various means, including direct transfers to low-
income individuals, income tax reductions, and corporate tax cuts (Murray and Rivers, 
2015; Ahmadi et al., 2022). In particular, the achievement of revenue neutrality in BC 
involves two primary mechanisms. Firstly, by initiating a 5% reduction in the bottom two 
income tax brackets, BC secured the lowest income tax rate in Canada for individuals 
earning up to $122,000. This reduction was complemented by additional measures such as 
the “low income climate action” tax credit and the Northern and Rural Homeowner benefit 
(Azevedo et al., 2023)7. Secondly, a series of reductions were applied to the general 
corporate tax rate, starting at 12% in 2008 and gradually decreasing to 11%, 10.5%, and 
10% in 2010 and 2011, before returning to 11% in 2014. Simultaneously, the small business 
corporate income tax rate decreased from 4.5% to 2.5 % in 2008 (Azevedo et al., 2023)8. 
According to the Budget and Fiscal Plan, the carbon tax generated approximately $1.2 
billion in annual revenue since 2012 when the rate stabilized at $30/tonne CO2eq, with 
around $1.4 billion returned to consumers (Ahmadi et al., 2022; Azevedo et al., 2023).  
 
Given the popularity of the carbon tax, it is unsurprising that economists have conducted 
several analyses of its effectiveness across a range of measures. Focussing on the transport 
fuel market, Rivers and Schaufele (2015) and Lawley and Thivierge (2018) find 5-8% 
reductions in gasoline demand due to the tax implementation. Azevedo et al. (2023) 
investigate the employment response to the tax: the absence of aggregate effects masks 
heterogeneous impacts, with large emission-intensive firms negatively affected and small 
businesses benefitting from the policy. In terms of global pollutants, Ahmadi et al. (2022) 
detect emissions reductions in the manufacturing sector, while the multisectoral analysis of 
Pretis (2022) identifies significant reductions in transportation emissions with negligible 
effects on the remaining sectors of the economy.  

 
6 Subsequent to the initial “Axe the tax” campaigns leading up to the 2009 provincial elections, polling data 
indicated a sustained increase in public approval of the tax until 2015 (Murray and Rivers, 2015). However, 
after 2012, there was a shift towards earmarking some revenues for specific sectors, creating a mixed system 
of redistribution (Murray and Rivers, 2015). Public opinion on the carbon tax was initially volatile, with 
campaigns against it leading up to the 2009 provincial elections, but sustained approval was observed until 
2015 (Murray and Rivers, 2015). Recent studies, though, suggest that attitudes towards carbon pricing may 
be more influenced by partisan identities than updated information about potential rebates (Mildenberger 
et al., 2022). 
7 The low income climate action tax credit was initially set as $100 per adult plus $30 per child, and 
subsequently raised to $115.50 per adult and $34.50 per child (Ministry of Finance, 2009; Ministry of 
Finance, 2013). The Northern and Rural Homeowner Benefit amounts to $200 but only applies to 
howeowners in areas outside the Capital (Victoria CMA), Greater Vancouver (Vancouver CMA) and Fraser 
Valley (Abbotsford CMA) regional districts. The appropriate rebate to compare to health gains is thus the 
low income climate action tax credit.  
8 Since 2008, various tax credits, ranging from the BC Seniors Home Renovation Tax Credit to the Film 
Incentive BC tax credit, have been implemented, contributing to the revenue redistribution.  
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2.2. Data and descriptive statistics 
 
In order to analyse the effect of British Columbia’s 2008 carbon tax on air quality, I 
assemble and process information on local pollutants’ concentrations, geographic 
characteristics, and socio-economic dynamics from multiple sources. The observational 
units used in the analysis are Dissemination Areas (DAs), the smallest standard geographic 
areas for which Canadian census data are disseminated. Since the paper is concerned with 
analysing the effect of carbon pricing on air quality in cities, I restrict the geographic scope 
of the dataset to 26 Canadian Census Metropolitan Areas (CMAs), thereby excluding rural 
areas and smaller towns9. Canadian census data is obtained from von Bergmann et al. (2022), 
while DA census boundaries are converted to common geographies based on von 
Bergmann (2021), and using DA administrative boundaries from the 2016 Canadian census 
as the target geography. My final dataset is thus comprised of 25,479 DAs observed over 
19 years, from 2000 to 2018, across 26 CMAs. The main outcome variable employed in the 
paper is yearly average PM2.5 concentration from Meng et al. (2019), which combine 
information from satellite-retrieved Aerosol Optical Depth with simulations and ground-
based observations obtained from monitoring stations readings. I extract the mean value 
of yearly PM2.5, weighted by grid-cell level population counts obtained from Rose et al. 
(2020), onto the 25,479 DAs which constitute my dataset for every year between 2000 and 
201810. 

 
The main advantage of this source compared to data obtained from monitoring stations is 
its much wider spatial and temporal coverage, which also allows me to overcome the 
selection problem mentioned in Grainger and Schreiber (2019) relative to the location of 
monitoring stations within urban areas11. The entity of data loss when using ground-based 
data is considerable: PM2.5 data from the National Atmospheric Surveillance Program 
(NAPS) is only available for 61 DAs in 2000, growing to 230 in 2018 as new monitoring 
stations get added every year (see Figure A.1). Nonetheless, the satellite-retrieved 
measurements from Meng et al. (2019), when restricted to the DAs with at least one PM2.5 

 
9 The CMAs in the dataset are: St. John’s, Halifax, Saint John, Quebec, Trois Rivieres, Sherbrooke, Montreal, 
Ottawa, Saguenay, Kingston, Toronto, Hamilton, St. Catharine’s, Kitchener, London, Windsor, Sudbury, 
Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Abbotsford, Vancouver, and Victoria. 
While the number of Canadian CMAs is 35 in the latest available census wave (2016), I only keep in the 
dataset those CMAs which were designated as such in the 2001 Census, in order to ensure compatibility 
across all waves.  
10 The resolution of the PM2.5 raster data is 0.01°x 0.01°, while population data is available for grid cells of 
dimension 0.0083° x 0.0083°, implying that the population raster had to be resampled at the resolution of 
the PM2.5 raster in order to be viable for use in the weighted mean calculation.  
11 Monitoring stations are likely to be located where air pollution is lower due to strategic behaviour and 
discrimination by local regulators, thereby introducing measurement error in an eventual empirical analysis.  
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ground monitoring station, correlate well with the NAPS readings, as shown in Figure A.2 
and Figure A.3.  

 
I rely on the Meng et al. (2019) PM2.5 estimates in order to produce my main results. 
However, I also run the main analysis using PM2.5 concentration data from van Donkelaar 
et al. (2019). While the two estimates are highly related, with a Pearson correlation 
coefficient of 0.795 (see Figure A.4 and Figure A.5), the concentrations from Meng et al. 
(2019) are generally lower throughout the sample12. In terms of relevant covariates and 
environmental justice dimensions, I first obtain population counts at the DA level from 
Rose et al. (2020), which are available for all years between 2000-201813. Further, I employ 
four waves of the Canadian census (2001-2016 at 5-year intervals) to retrieve information 
on median income at the DA level, and on the racial composition of the DA population, 
calculating the share of population belonging to a visible minority and the Theil’s Entropy 
Index (Iceland, 2004) for racial diversity. I also extract the 2006 Material Deprivation Index 
from Pampalon et al. (2012) for all DAs in my sample. If the carbon tax was successful in 
producing a behavioural adjustment in BC residents, an expected result would be higher 
take up of alternative means of transport within metropolitan areas. Therefore, I leverage 
the detailed information contained in the four waves of Canadian census data to retrieve 
DA-level data on commute mode shares. I divide commute modes in two different 
categories: high emissions (cars, taxis, and motorcycles), and low emissions (public 
transport, bicycles, and walking)14.  

 
Figure 1 plots the baseline spatial distribution of the dependent variable and the main 
covariates over the Vancouver CMA, the most populated metropolitan area in the treated 
province of British Columbia. Time-varying variables are averaged over 2005-2007, the 
three years preceding the implementation of the carbon tax, while all variables retrieved 
from the Canadian Census are taken at their 2006 values, the last observation before the 
tax was instituted. The distibution of PM2.5 concentrations is highly spatially correlated with 
population density, as found e.g. in the US by Carozzi and Roth (2023) or Germany by 
Borck and Schrauth (2021). Confirming the insights of the enviromental justice literature 
(Cain et al., 2024) racial diversity and the inverse of median income are also highly spatially 
correlated with air pollution at the baseline. Baseline commute mode seems to be inversely 
related with the spatial distribution of PM2.5: areas whose inhabitants are less reliant on cars, 

 
12 The choice of employing data from Meng et al. (2019) is conservative, as results using the van Donkelaar 
et al. (2019) dataset are generally higher in magnitude.  
13 The dataset also contains population counts for all DAs extrapolated from Canadian censuses; however, 
this data is only available in 5-years intervals between 2001 and 2016. 
14 I further decompose the low emissions category into public transport only and zero emissions commutes 
(cycling and walking).  
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taxis and motorbikes seem to be more polluted on average, a result probably due to their 
centrality with respect to the road networks and urban form15.  

 
FIGURE 1 • DESCRIPTIVE STATISTICS AT THE BASELINE  

 

 
 

Notes: Spatial distribution of PM2.5 and relevant covariates within the Vancouver CMA. Top row: PM2.5 and 
population density; Middle row: median income and visible minority population share; Bottom row: high 
emission and public transport commute mode shares. 

Lastly, I obtain monthly information on the BC gasoline and diesel fuel markets, at the 
province level, for January 1991-December 2016. In particular, I extract the annual sales of 
transportation fuels (motor gasoline and diesel), from Statistics Canada (2021b), gasoline 
and diesel price data from Kalibrate (formerly Kent Group Ltd.) at the monthly level  
for the city of Vancouver, which I consider representative of the entire province, monthly 
after tax income and unemployment rate data from Statistics Canada (2021c), and the  
CAD-USD monthly exchange rate, retrieved from the Pacific Exchange Rate Service at 
University of British Columbia’s Sauder School of Business.  

 
 

15 Summary statistics for the whole sample, split across treatment and control CMAs, are presented in  
Table A.1 and Table A.2 for the pre-treatment and post-treatment periods, respectively. 

PM2.5 (µg m3)
3.153 to 5.065
5.065 to 5.819
5.819 to 6.466
6.466 to 7.012
7.012 to 8.470

Population (pop km2)
0 to 1,885
1,885 to 3,514
3,514 to 5,574
5,574 to 7,701
7,701 to 11,269

Median Income ($)
0 to 4,920
4,920 to 21,284
21,284 to 28,455
28,455 to 36,922
36,922 to 81,038

Visible Minority (%)
0.0 to 17.8
17.8 to 36.0
36.0 to 54.5
54.5 to 73.5
73.5 to 100.0

High Emission Commute (%)
0.0 to 44.3
44.3 to 61.8
61.8 to 75.3
75.3 to 86.8
86.8 to 100.0

Public Transport commute (%)

0.00 to 8.30
8.30 to 16.75
16.75 to 26.25
26.25 to 37.79
37.79 to 68.29
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3. EMPIRICAL STRATEGY 

3.1. Simple and matched difference-in-differences 
 
The core aim of my empirical strategy is to estimate the treatment effect of the 2008 British 
Columbian carbon tax on local air pollution, measured in terms of PM2.5 concentrations at the 
DA level. A traditional methodology for this estimation is a two-way fixed effects difference-
in-differences (TWFE-DID) regression. The estimating equation takes the form:  

𝑃𝑀!.#$% =	𝜏&$&	𝐷$% +	𝜃% + 𝜂$ +	𝜀$%	 (1) 

Where 𝐷$% is the DID binary indicator, taking value 1 for all treated units after the 
implementation of the carbon tax in 2008, and 0 for all other observations; 𝜃% and 𝜂$ are 
respectively time and unit specific fixed effects, 𝜀$%	is a time-varying idiosyncratic error 
term, and 𝜏&$&	is the coefficient of interest, capturing the average effect of being exposed 
to the carbon tax.  

In order for 𝜏&$& to be equal to the average treatment effect on the treated cohort (ATT), 
the identifying assumption is that parallel outcome trends between the treated and the 
control units hold, i.e. if the 2008 carbon tax had not been implemented in British 
Columbia, PM2.5 levels in British Columbian DAs would have followed the same trajectory 
as PM2.5 levels in DAs located in other Canadian provinces. Figure A.6 and Figure A.7 
report the average PM2.5 trends for 2000-2016 and 2000-2018, respectively, for British 
Columbian and control DAs, together with the universe of PM2.5 observations. The parallel 
trends assumption is untestable by definition, but it is essential to inspect the pre-treatment 
outcome paths and the distribution of treatment and control observations around their 
mean pre-intervention trends. In both cases, there is reason to suspect that the DID 
estimator would fail to identify the correct ATT. A visual inspection pre-treatment trends 
suggests a violation of the parallel trends condition (more evidently in the case of Figure 
A.7), while a more formal placebo DID regression of PM2.5 on treatment status with data 
limited to 2000-2007 and treatment assigned in 2004 identifies a significant placebo 
divergence in trends in both cases (Table A.3). Moreover, the dispersion of control 
observations around their mean trends is much higher than for treatment units, revealing 
substantial heterogeneity: by giving equal weight to all control observations, DID will 
include units whose pre and post-treatment outcome paths fundamentally differ from those 
of DAs in British Columbia, likely introducing an upward bias in the coefficient.  

A potential solution to the pre-treatment heterogeneity in levels and trends is matching 
treatment and control groups on the basis of baseline pollution levels and on covariates 
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which influence air quality. Restricting the analysis to DAs which experience similar 
outcomes and are exposed to similar pollution stressors can attenuate the pre-treatment 
dispersion in PM2.5 levels and divergence in trends, and ensure the sample is more balanced 
before performing the DID regression (Imbens, 2015). I use one-to-one matching, moving 
away from the traditionally employed propensity score algorithm and instead preferring 
Coarsened Exact Matching (CEM) (Iacus et al., 2012). I perform two versions of this 
procedure: in the first one (MDID1), I match treatment and control units on the baseline 
(2005-2007) average level of PM2.5 . In the second one (MDID2), I add baseline averages 
of population density, median income, high emission commute mode share, and road 
density. I exploit CEM to pre-process and trim the sample before running a weighted 
TWFE-DID regression using the CEM matching weights 𝜔'()	/ in the following form:  

𝑃𝑀!.#$%0𝜔$ =	𝜏&$&	𝐷$%0𝜔$ +	𝜃%0𝜔$ + 𝜂$0𝜔$ +	𝜀$%0𝜔$	 (2) 

 

3.2. Synthetic control method and synthetic difference-in-differences 

The problem of diverging pre-treatment trends in empirical applications is often addressed 
through the SCM (Abadie and Gardeazabal, 2003; Abadie, 2021)16. In the BC carbon tax 
case, the SCM constructs a set of synthetic DAs as a weighted combination of control DAs 
by finding, for each treated unit 𝑖, a non-negative vector of weights 𝜔*' summing to one, 
which ensures that each convex combination of the i outcome variable for control units 
matches each outcome variable for the treated units for all periods up to the intervention 
date.  

In order to combine the attractive features of both TWFE-DID (the inclusion of additive 
unit-specific and time-specific fixed effects), and SCM (reducing the reliance on the parallel 
trends assumption by weighting observations in order to ensure closely matched pre-
intervention trends), Arkhangelsky et al. (2021) have introduced a new method, synthetic 
difference-in-differences (SDID), which employs time and unit (two-way) fixed effects in 
the regression function (as in TWFE-DID), together with unit-specific weights (as in SCM) 
and time-specific weights which lessen the role of time periods that are largely divergent 
from post-treatment time periods. In a nutshell, for each treated unit SDID estimates: (1) 
unit weights 𝜔$*&$&	which underpin a synthetic control whose outcome is approximately 
parallel to the outcome for the treated unit; (2) time weights 𝜆%*&$&	which ensure that the 
average post-treatment outcome for control units only differs by a constant from the 
weighted average of pre-treatment outcome for each of the control units – a synthetic pre-

 
16 Usually with a unique treated unit, but extensible to the case of multiple treated units.  
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treatment period using controls. Once unit and time weights are calculated, SDID estimates 
a TWFE regression on the resulting panel, identifying the SDID ATT 𝜏*&$& by solving the 
minimisation problem17: 

4𝜏̂*&$&, 𝜇̂, 𝜂̂, 𝜃89 = 	 argmin
+,-,.,/

@AA(𝑃𝑀!.#$% − 𝜇 − 𝜂$ −	𝜃% − 𝜏𝐷$%)!𝜔0C
*&$&

1

%23

4

$23

𝜆D%*&$&E (3) 

 

In the remainder of the paper, I regard SDID as my preferred method in order to estimate 
the effect of the 2008 BC carbon tax on air pollution co-benefits, as the methodology allows 
me to overcome the apparent violation of the parallel trends assumption and pre-treatment 
outcome heterogeneity problems in conventional DID; nonetheless, I estimate my main 
regression and robustness checks using DID, MDID, SCM and SDID, in order to assess 
the direction of the potential bias. I calculate standard errors for SCM and SDID using the 
bootstrap variance estimation algorithm described in Arkhangelsky et al. (2021, p. 4109), 
with 200 replications. The procedure constructs a bootstrap dataset by sampling a portion 
of the original dataset with replacement, and computes the estimator 𝜏(6) on this subset for 
each iteration 𝑏. The variance is then defined as:  

𝑉8+
6 =

1
𝑏A(𝜏̂(6) −	

1
𝐵A𝜏̂(6)

8

623

)!
8

623

(4) 

 
4. RESULTS  

In Table 1, I report the results of the DID, MDID, SCM and SDID regressions, using the 
Meng et al. (2019) PM2.5 dataset. The simple DID regression is also reported graphically, 
alongside the outcome path plots for SCM and SDID, in Figure 2. It is immediate to note 
how the violation of the parallel trends assumption examined in Table A.3 and Figure A.6 
results in a likely case of upward bias for the simple DID, confirmed by the positive and 
significant coefficient, 𝜏̂&$&	= 0.39μg/m3, reported in column (1) of Table 1 and in the 
leftmost panel of Figure 2. This result would indicate that the carbon tax has resulted in an 
increase of PM2.5 emissions, which would contradict the findings by Rivers and Schaufele 
(2015) and Pretis (2022) on fuel consumption and CO2 emissions. MDID1 and MDID2 
results are instead obtained by pre-processing the sample using the CEM procedure 

 
17 Section A2 presents a detailed formal comparison between TWFE-DID, SCM, and SDID, drawing on 
the seminal work of Arkhangelsky et al. (2021).  
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described in Section III, matching on baseline PM2.5 levels in column (2) and on baseline 
PM2.5, population density, median income, high emission commute mode share and road 
density in column (3). The matching procedure produces estimation samples which are 
much more closely aligned (Figure A.8 and A.9), and reverses the sign on the simple DID 
estimates, with negative and significant results contained in the 𝜏̂)&$&	= [−0.27, −0.35] 
μg/m3 range that are a first indication of the incidence of carbon pricing on air quality co-
benefits. Moving away from simple DID estimation seems to be an effective strategy in 
minimising the impact of diverging trends and unbalanced pre-treatment characteristics.  

Columns (4) and (5) confirm this insight by relying on the SCM and SDID methods, which 
also identify negative and statistically significant effects of the tax in reducing PM2.5 emissions. 
In the centre panel of Figure 2, I plot the average outcome path for the treated units and the 
traditional synthetic control. The improvement in pre-treatment fit is dramatic, with a 
minimal average deviation between British Columbian DAs and their controls, implying that 
the SCM performs well in giving positive weights to control units which best approximate 
treated DAs’ outcome paths and zero weight to control units which exhibit different trends. 
Consistently with the hypothesised bias of the simple DID estimator, SCM indeed agrees 
with MDID in identifying an effect of opposite sign to DID, 𝜏̂*' = −0.14 μg/m3. Results for 
the SDID estimator are graphically shown in the right-most panel of Figure 2. At the bottom 
of the panel, pre-treatment time-weights are represented in pink. Pre-treatment periods are 
weighted to match post-treatment levels (plus a constant) in the outcome variable for the 
control units. The SDID estimator does a particularly good job in imposing pre-treatment 
parallel trends in the years preceding the tax, even if weights 𝜆% are unevenly distributed over 
the pre-intervention period. However, negligible weights in 2007-2008 are reassuring, given 
that a standard caveat in event-study methodologies is the excessive reliance on the single 
period immediately preceding the intervention (Heckman and Smith, 1999). The SDID 
procedure is able to select control units which exhibit pre-treatment trends that are almost 
perfectly parallel to BC’s outcome path, especially in the four-year window preceding the 
intervention. The estimated ATT is 𝜏̂*&$& = −0.36 μg/m3, corresponding to a 5.2% reduction 
with respect to pre-intervention mean pollution levels. I regard SDID as the preferred 
methodology due to its greater flexibility and to the selection of a sparser set of control DAs18. 
While SCM obtains a near-perfect fit pre-treatment, the outcome path of its synthetic unit 

 
18 SDID selects indeed 6,258 control units among the untreated DAs and then performs DID on the 
matched sample with the inclusion of unit and time fixed effects to aid the estimation.  
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heavily depends on the particular set of units receiving positive weights, which in my highly 
disaggregated setting is not ideal19.  

TABLE 1 • THE 2008 CARBON TAX AND CHANGES IN PM2.5  
 

 

 

 

 

 

 
Notes: All point estimates represent the average impact of the 2008 carbon tax during the 2009-2016 post-
treatment period. Standard errors in parentheses are calculated using the bootstrap variance estimation 
algorithm described in Arkhangelsky et al. (2021) with 200 replications for columns (1), (4) and (5), and are 
clustered at the CMA level for columns (2) and (3). In Column (2) the data is pre-processed by matching on 
coarsened bins of baseline PM2.5 levels. Column (3) additionally matches on population density, median 
income, high emissions commute mode share and road density at the DA level. All regressions use 2000-
2016 data.  

Notably, MDID, SCM and SDID all agree in identifying a negative and statistically 
significant effect of the 2008 carbon tax on PM2.5 emissions, contradicting “naive” DID 
estimates. The potential bias arising in the simple DID regression could be due to the 
diverging secular trends between treatment and control units, with treatment units on 
steeper declining trends prior to the implementation of the tax vis-à-vis control units. It is 
thus essential to address this concern in order to obtain a “clean identification” of the policy 
impact (Sager and Singer, 2024). Failing to do so would introduce a source of bias which 
could go as far as reversing the correct estimates. Finally, while I regard SDID as the 
preferred methodology over SCM due to its flexibility and its reliance on a larger portion 
of the control pool, it is crucial to note that the MDID in this instance obtains results which 
are similar in magnitude. 

 

 

 
19 In Figure A.10, I aggregate all 6,258 DAs which receive positive weights to the CMA level, in order to 
obtain the composition of synthetic BC in terms of percentages of other Canadian CMAs, in a similar vein 
to the traditional SCM methodology of Abadie (2021).  
 

 (1) (2) (3) (4) (5) 
 DID MDID1 MDID2 SCM SDID 
𝜏̂ 0.3925 

(0.074) 
-0.2750 
(0.1495) 

-0.3504 
(0.1676) 

-0.1421 
(0.0809) 

-0.3633 
(0.0219) 

Unit FE Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes 
𝜔!  $𝜔! $𝜔! Yes Yes 
𝜆"     Yes 

𝑁#$% 432939 305320 132430 432939 432939 
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FIGURE 2 • THE IMPACT OF THE 2008 CARBON TAX ON CHANGES IN PM2.5  
 

 
Notes: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al. (2019) data. The 2008 
carbon tax is denoted by a black vertical line. Pre-treatment time weights 𝜆! are denoted in pink.  

 

5. ROBUSTNESS CHECKS  

5.1. Main results with van Donkelaar et al. (2019) PM2.5 data 

I repeat the DID, SCM and SDID estimation using the van Donkelaar et al. (2019) PM2.5 

dataset, which is available between 2000 and 2018. Notwithstanding the high correlation 
between the two outcome variables, as outlined in Figure A.4, both the treatment and 
control pre-intervention trends exhibit some differences with respect to the Meng et al. 
(2019) dataset20. The violation of the parallel trends assumption is once again highlighted 
in a placebo DID regression (Table A.3), as well as in the graphical representation of the 
DID regression in Figure A.12 which, differently from the previous estimation, identifies a 
negative effect of the 2008 carbon tax on emissions of 𝜏̂&$& = −0.5μg/m3 (see Table A.4).  

The SCM, represented graphically in the middle panel of Figure A.12, again obtains a good 
pre-treatment fit, signalling that each British Columbian DA’s outcome path is best 
approximated by a convex combination of control DAs rather than equally weighted 

 
20 However, the temporal location of peaks and troughs is generally respected, as is the relationship between 
the BC and control units outcome path. Indeed, DAs located in British Columbia always exhibit lower 
average annual concentrations of particulate pollution, and their PM2.5 trend prior to 2008 appears to decline 
at an even faster pace than for control observations, barring some peaks in concentrations typical of the 
control provinces.  

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff
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control units. Furthermore, as evidenced in Table A.4, the potential direction of the TWFE-
DID bias is consistent with the main result: the SCM estimates a negative ATT of 𝜏̂*' = 
−0.71μg/m3, therefore qualitatively reinforcing the SCM result of Table 1. A similar 
conclusion can be drawn from the results of the SDID estimation, presented in the right-
most panel of Figure A.12. The SDID procedure is able to select control units21 which 
exhibit pre-treatment trends that are almost perfectly parallel to BC’s outcome path, with 
the exception of outlying time periods which receive zero-weights in the estimation. The 
estimated ATT of 𝜏̂*&$& = −0.89μg/m3 is slightly lower, but qualitatively similar to the SCM 
ATT. In terms of magnitude, both the SCM and SDID regressions identify a substantial 
drop in PM2.5 concentrations with respect to 2000-2007 levels, corresponding to a reduction 
of 10.9% from the pre-intervention PM2.5 mean for British Columbia.  

 
2.2. Accounting for measurement error in satellite-based estimates 

 
The remotely sensed PM2.5 datasets which I employ are gridded estimates of concentrations 
and may contain prediction error, which could substantially alter regression results (Fowlie 
et al., 2019). I assess the robustness of my estimates to this type of non-classical 
measurement error, by exploiting the geographic correspondence between gridded PM2.5 

data and DAs which contain at least one NAPS monitoring station, in order to construct a 
spatially matched dataset containing predicted and observed PM2.5. I first calculate 
prediction error as the difference between satellite-derived PM2.5 and monitor readings for 
the 1501 DA-year pairs which contain at least one NAPS monitoring station. As in Fowlie 
et al. (2019), I then regress prediction error ∆𝑃𝑀!.# on a set of covariates at the DA level22 
and I predict out of sample ∆𝑃𝑀!.# for the entire dataset.  

I adjust remotely sensed PM2.5 data by accounting for prediction error, and use the quantity 
𝑃𝑀!.#0%/ =𝑃𝑀!.#$% +	Δ𝑃𝑀!.#0%/  to run SDID regressions using Meng et al. (2019) and van 
Donkelaar et al. (2019) data, respectively. The results, reported in Table A.5, are slightly 
lower though qualitatively similar to the main specifications, with 𝜏̂*&$& = −0.26μg/m3 

using the Meng et al. (2019) dataset and 𝜏̂*&$& = −0.85μg/m3 using corrected van Donkelaar 
et al. (2019) data. The SDID estimator adequately identifies treatment effects by obtaining 
pre-treatment parallel trends in both instances (Figure A.13). The adherence between these 
results and the main specifications reinforces confidence about correctly measuring the 
policy effects. While the substantial difference between estimated treatment effects using 
the two gridded PM2.5 datasets remains, this is likely due to their calibration and prediction 

 
21 The composition of the donor pool, aggregated to the CMA level, is reported in Figure A.11.  
22 Namely, satellite-based PM2.5 , population density, nighttime lights, maximum and minimum temperature, 
and wind speed.  
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procedures rather than prediction error. I conservatively adopt lower bound estimates using 
the Meng et al. (2019) as the main result, and regard all estimates using the van Donkelaar 
et al. (2019) product as the upper bound on my results.  

 
5.3. Narrower temporal and spatial scope 

 
Effect Dynamics: I restrict the estimation window to 2000-2013, in order to check 
whether the carbon tax ramp-up is the main mechanism behind the continuous	reductions, 
and to what extent does the post-2013 tax rate freeze reverse the improvements23. The 
results, presented in Figure A.14 and Table A.6 identify a higher ATT of 𝜏̂*&$&= −0.67 
μg/m3, which corroborates the hypothesis. The dynamics of the carbon tax phase-in are 
thus an important component of observed reductions: the effect is almost double in size in 
the first 5 years of the tax scheme, when tax rates increase step-wise every year. Air pollution 
improvements slightly reverse and stabilise at a lower level once the tax signal is kept 
constant.  

Main CMA: I confine the treated pool to DAs within the Vancouver metropolitan area, 
excluding all DAs in the Abbotsford and Victoria CMAs. The resulting treatment cohort is 
comprised of 2874 DAs, vis-à-vis the 3490 DAs constituting the entire treatment unit pool; 
the control pool is kept the same, with 21989 control DAs. Perhaps unsurprisingly, given 
the relatively small number of DAs pertaining to the Abbotsford and Victoria CMAs, the 
results (reported in Figure A.15 and Table A.7) are qualitatively unchanged from the main 
regressions using the Meng et al. (2019) dataset.  

NAPS Locations: I select DAs corresponding to the location of NAPS monitoring 
stations (see Figure A.1)24. I thus consider just those locations in which pollution monitors 
have been established, thereby restricting the analysis to areas in which pollution is likely to 
be a greater concern. Here, the size of the dataset is considerably restricted: the cross-
section of DAs kept in the treated pool counts just 25 observations, while 106 DAs are 
kept in the control pool. Once again, the results (presented in Figure A.16 and Table A.8), 
are qualitatively similar to the main specifications. Notably, the performance of the SDID 
estimator is not considerably worsened on this much smaller sample, achieving a reasonable 
pre-treatment fit, and therefore identifying a credible ATT.  

 

 
23 In 2012, the carbon tax was frozen at $30/tCO2 as reported in Section 2.  
24 I match DAs with all monitoring stations in the dataset, regardless of the date of establishment of each 
monitoring station, in order to maximise observations.  
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6. MECHANISMS 

6.1. Reductions in transport fuel demand 

The first candidate explanation for the observed reductions in particulate matter 
concentrations is a change in consumer behaviour regarding transportation fuel. Some 
evidence supporting this explanation is found in early analyses of the BC carbon tax (e.g. 
Rivers and Schaufele, 2015; Lawley and Thivierge, 2018), which use a limited post-
intervention time period and only focus on gasoline consumption25. On the contrary, fuel 
substitution away from gasoline and towards diesel is claimed to be a potential mechanism 
behind the PM2.5 increases found in Saberian (2017), notwithstanding the negative impacts 
found by the time series analysis of Bernard and Kichian (2019) and the strong prevalence 
of gasoline vehicles among BC car sales (see Figure A.19 and A.20).  

I reconcile the evidence on the aggregate level effects of the carbon tax on transportation 
fuel demand by introducing a recently developed method for high-frequency time series 
analysis: the Causal-ARIMA (C-ARIMA) estimator of Menchetti et al. (2022). By exploiting 
features of ARIMA models, the method is especially appropriate to analyse complex 
seasonal, nonstationary processes such as gasoline and diesel sales observed monthly (see 
Figure A.17, panels A and B). C-ARIMA combines attractive features from the DID and 
SCM estimator for the case in which no suitable control unit is available26 and when the 
number of pre-intervention time periods is large27. Under standard assumptions28, C-
ARIMA is able to learn the treated unit’s time series dynamics and forecast it after the shock 
takes place. By using the forecasted series as the treated unit’s counterfactual outcome, the 
method identifies two main sets of causal effects: the temporal average causal effect and 
the cumulative treatment effect.  

I run C-ARIMA separately for per capita monthly gasoline and diesel sales at the aggregate 
BC level between January 1991 and December 2016. The intervention date is July 2008, i.e. 
the specific month in which the BC carbon tax came into effect. In Table 2, I report the 

 
25 Which accounts for most of the residential vehicle fleet (see Figure A.19) but does not include heavy duty 
vehicles used in commercial and industrial operations (Bernard and Kichian, 2019).  
26 In my context, a pool of eligible control units is represented by other Canadian provinces. However, other 
provinces exhibit diverging pre-intervention trends in gasoline sales (see Figure A.18) when aggregating the 
TWFE-DID coefficients into an event study plot.  
27 As is the case in the monthly analysis of BC fuel consumption between January 1991 and December 2016, 
with 210 pre-intervention time periods.  
28 No temporal interference (i.e. absence of anticipation effects), covariates-treatment independence and 
conditional stationarity (Menchetti et al., 2022).  
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results from estimations with and without a matrix of business cycle controls29. Both the 
temporal average causal effect 𝜏%M 	and the cumulative causal effect ∑ 𝜏%M1

%2%!"# 	are negative 
and statistically significant across all specifications, highlighting a successful impact of the 
BC carbon tax in decreasing fuel demand, consistently with Rivers and Schaufele (2015) 
and Bernard and Kichian (2019). In Figure A.17, the results from the estimation are 
reported graphically.  

TABLE 2 • C-ARIMA: MONTHLY GASOLINE AND DIESEL DEMAND  
 

 

 

 

 

 

 

 
 
Notes: The dependent variable is total monthly gasoline (diesel) sales per capita (in litres) recorded in British 
Columbia benween January 1991 and December 2016. Columns (2) and (4) include a matrix of monthly 
province-level covariates, namely consumer price index, gasoline (diesel) crude cost, population, 
unemployment rate, after tax income and the US-CAD exchange rate. Standard errors in parentheses are 
computed through 1000 bootstrap runs. 

 
6.2. Commute mode switching 

I analyse commute mode choices at the DA level as an additional mechanism driving the 
main results. While commute mode is an imperfect measure of the number and type of 
trips made by British Columbians, I can rely on the same administrative level to the one 
used in the main analysis by retrieving information from the 2001, 2006, 2011, and 2016 
Canadian censuses, thereby preserving granularity. In Table 3 and Table 4, I report	TWFE-

 
29 Namely, provincial population, unemployment, after tax income, exchange rate and the cost of crude 
gasoline and diesel, respectively.  
 

   

 (1) (2) (3) (4) 
𝜏̂" -3.883 

(0.553) 
-4.675 
(0.506) 

-1.756 
(0.412) 

-0.912 
(0.236) 

' 𝜏"(
&

"'"!"#
 

-396.052 
(56.453) 

-818.405 
(14.962) 

-179.089 
(42.066) 

-92.983 
(24.093) 

     
     

Controls - Yes - Yes 

𝑁#$% 312 312 312 312 

Gasoline Sales Diesel Sales 
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DID regression results30 employing the share of commuters using high-emissions and 
public transport commute modes, respectively31.  

In all tables, column (1) is the baseline specification, a simple DID regression with DA and 
year fixed effects and no controls, employing the full panel of DAs across census years. In 
column (4), I add weather controls for precipitation, maximum and minimum temperature, 
and wind speed, plus the natural logarithm of population and median income. When 
employing the full pool of control DAs, the first result of note is that British Columbian 
DAs experience an average 4.2% reduction in the use of cars, taxis, and motorcycles, which 
rises to 4.7% when adding controls. This reduction is almost specular to the increase in the 
share of commuters using public transport, biking and walking to reach their workplace 
(Table A.9). Moreover, as evidenced in Table 4 and Table A.10, most of this increase (3.5-
3.9%) is due to a higher reliance on public transport, while a residual share of 0.5-0.7% is 
due to a switch to active commuting.  

All results are confirmed and stronger in magnitude when considering more restrictive 
specifications: columns (2) and (5) restrict the specifications in (1) and (4) to the DAs which 
receive positive weights in the main SDID regressions, in order to establish whether the 
mechanisms are effectively retrieved when employing the same set of observations on 
which the main ATT is estimated. Results are higher in magnitude by about 1%, jumping 
to a 5.3% reduction in high-emission commute modes in the case without controls. Here, 
the inclusion of control variables slightly dampens the impact to 5.2%; nonetheless, the 
specularity with the increase in low-emission commute modes is preserved. Finally, in 
columns (3) and (6) I augment the DID regressions by retrieving an including the weights 
from the main SDID regressions. I weigh all treatment observations equally and all control 
observations according to the value of 𝜔$ they receive after the data-driven SDID 
procedure. The magnitude of the increase in public transport commute share increases 
further, to 4.2% in the case without covariates and is again dampened to 4.1% in the case 
with covariates. The hypothesis of a behavioural adjustment by BC citizens in response to 
the carbon tax is thus confirmed; residents of BC’s DAs switch away from high-emissions 

 
30 Due to the structure of the data, collected at 5-year intervals, I am prevented from using the SCM and 
SDID methodology in this exercise; I thus resort to traditional TWFE-DID estimation of commute mode 
switching, analysing the data separately for each category of commute mode. Details on this estimation 
strategy are reported in Section B.  
31 As the low-emissions transport mode is the sum of public transport and zero-emissions modes, I only 
report the results for public transport in the main text and present the aggregate low emissions and the sub-
split for zero-emissions in Table A.9, and Table A.10.  
 



QUADERNO GIORGIO ROTA N. 12 – LORENZO SILECI  

    

43 

commute modes towards low-emissions ones, with public transport as the main container 
for these substitutions. 

TABLE 3 • DID RESULTS FOR HIGH EMISSIONS COMMUTE MODE  

 
Notes: The dependent variable is the dissemination area level share of high emissions commutes. All 
regressions include dissemination area and year fixed effects. Columns (4)-(6) include controls for 
precipitation, maximum and minimum temperature, and wind speed, plus the natural logarithm of 
population and median income. Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which 
receive positive weights in the main SDID regression. Columns (3) and (6) additionally include the estimated 
SDID unit weights ωi as regression weights. Standard errors in parentheses are clustered at the CMA level.  

 
 

TABLE 4 • DID RESULTS FOR PUBLIC TRANSPORT 

 
Notes: The dependent variable is the dissemination area level share of public transport commutes. All 
regressions include dissemination area and year fixed effects. Columns (4)-(6) include controls for 
precipitation, maximum and minimum temperature, and wind speed, plus the natural logarithm of 
population and median income. Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which 
receive positive weights in the main SDID regression. Columns (3) and (6) additionally include the estimated 
SDID unit weights ωi as regression weights. Standard errors in parentheses are clustered at the CMA level.  

                                   High Emissions Commute Mode 
 (1) (2) (3) (4) (5) (6) 

DID -0.0417 
(0.0105) 

-0.0527 
(0.0095) 

-0.0549 
(0.0103) 

-0.0466 
(0.0102) 

-0.0519 
(0.0106) 

-0.0516 
(0.0109) 

DA FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Controls    Yes Yes Yes 

SDID control pool  Yes Yes  Yes Yes 
SDID weights   Yes   Yes 

R2 0.87184 0.83989 0.84360 0.87595 0.84508 0.84847 
Adj. R2 0.82896 0.78629 0.79124 0.83400 0.79267 0.79721 
𝑁#$% 101358 38769 38769 100244 38348 38348 

 

 (1) (2) (3) (4) (5) (6) 

DID 0.0352 
(0.0107) 

0.0410 
(0.0107) 

0.0417 
(0.0112) 

0.0391 
(0.0115) 

0.0422 
(0.0115) 

0.0414 
(0.0111) 

DA FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Controls    Yes Yes Yes 

SDID control pool  Yes Yes  Yes Yes 
SDID weights   Yes   Yes 

R2 0.83768 0.78668 0.78011 0.84196 0.79197 0.78571 
Adj. R2 0.78336 0.71526 0.70650 0.78851 0.72160 0.71322 
𝑁"#$ 101358 38769 38769 100244 38348 38348 

Public Transport Commute Mode 



QUADERNO GIORGIO ROTA N. 12 – LORENZO SILECI 

   

44 

7. ENVIRONMENTAL JUSTICE DYNAMICS 
 

In light of a growing literature in environmental justice (see Banzhaf et al., 2019; Cain et al., 
2024), I examine efficiency-equity trade-offs in the realisation of co-benefits, inspecting 
whether the estimated air pollution reductions arise heterogeneously over metropolitan 
areas. In the main analysis, the parameter identifying the effect of the 2008 BC carbon tax 
on PM2.5 emissions has always been assumed as constant across treated units. Nonetheless, 
when dealing with disaggregated data within Census Metropolitan Areas, a homogeneously 
estimated ATT is likely to mask substantial heterogeneities across DAs which could be 
highly informative about the performance of different locations within metropolitan areas.  

A first channel to explore is certainly that of pre-existing pollution levels: standard 
economic theory would in fact predict that emission abatement would happen first where 
the marginal cost of reducing emissions is lower, i.e. where pre-existing pollution is higher 
(that is, lower-hanging fruits would be picked earlier). This avenue is explored by 
Auffhammer et al. (2009) and Sager and Singer (2024), who find substantially higher 
reductions in PM2.5 and PM10 due to the Clean Air Act in non-attainment US census tracts 
that are more polluted in the three years preceding the implementation of the policy. 
Nonetheless, the opposite result may also arise if the rate of vehicle replacement is higher 
in less polluted areas or if more polluted areas substitute more strongly towards less CO2-
intensive, but more PM2.5 -intensive vehicles such as diesel automobiles or, crucially, diesel-
powered public transport32.  

In light of the results of Borck and Schrauth (2021) and Carozzi and Roth (2023), it is also 
worth exploring whether heterogeneity in air pollution reductions arises at different levels 
of the population density distribution: indeed, while densely populated areas have been 
shown to experience higher concentrations of PM2.5 particulate, usually population density 
is higher in city centres, where greater opportunities for substitution away from cars may 
arise. Again, the nature of the eventual substitution plays a crucial role in determining the 
direction of the realised effect33.  

The most investigated avenue in studies focussing on air quality and environmental justice 
dynamics is certainly that of racial disparities (e.g. Colmer et al., 2020; Jbaily et al., 2022; 
Currie et al., 2023; Sheriff, 2024; Sager and Singer, 2024). This is possibly due to a relatively 
higher weight of US-centric studies in the literature, with much fewer evidence on extra-

 
32 That is, if the implicit assumption of homogeneous abatement technology across locations is removed.  
33 To the point of determining detrimental impacts in case the substitute transport mode is more CO2 
efficient but emits greater PM2.5 concentrations than the original one – such as the case of diesel-powered 
engines substituting for gasoline ones.  
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US contexts. Nonetheless, as shown in Figure 1, there is a high spatial correlation between 
the location of DAs with higher shares of visible minority population and the pre-
intervention PM2.5 distribution. It is thus extremely important to (1) assess whether there is 
an ex ante racial disparity in PM2.5 exposure in British Columbian metropolitan areas, (2) 
examine whether ex post air quality racial EJ gaps fall or widen as a result of a market-based 
intervention such as a carbon tax.  

Lastly, a large body of research has shown that carbon pricing is regressive along income 
and wealth dimensions (Poterba, 1991; Grainger and Kolstad, 2010; Sager, 2023), but its 
incidence depends on the destination of tax revenues (Metcalf, 2009; Davis and Knittel, 
2019). While this insight is well understood, constituting for instance the basis for the BC 
low income climate action tax credit, there is much less certainty about the role of realised 
air quality co-benefits in mitigating or exacerbating income regressiveness. Indeed, if a 
disproportionately large share of co-benefits accrue to population in higher income 
brackets, there is an additional dimension of carbon tax inequality that is not factored in 
projected governmental revenue rebates.  

In Figure 3, the long term changes in PM2.5 concentrations are mapped out for the three 
BC CMAs in my sample, to individuate areas which have withstood more pronounced 
improvements. Confirming the traditional insights of the EJ literature (Colmer et al., 2020; 
Jbaily et al., 2022) there appears to be a secular convergence in air pollution concentrations: 
dense, central areas with higher initial PM2.5 concentrations and higher levels of 
socioeconomic deprivation see greater absolute improvements in air quality.  

These insights are only descriptive, as they do not take into account the potential for similar 
secular trends in control areas, nor the impact of the BC carbon tax on air pollution 
concentrations within a potential outcomes framework. Table A.11 and Table A.12 report 
ex ante and ex post gaps in observed PM2.5 in British Columbia and control CMAs along 
the top and bottom quintiles of three covariates describing environmental justice 
dimensions: (1) baseline population density, (2) baseline share of population belonging to a 
visible minority (as a measure of racial disparity), (3) baseline median income34. It is 
straightforward to assess how, before the implementation of the carbon tax, EJ gaps 
manifest along every dimension in both subsamples. Denser, more racially diverse, and 
poorer areas of BC CMAs are comparatively more polluted at the start of the sample, by 
1.9-2.2 3 μg/m3, or 27-32% of the pre-treatment PM2.5 average level in treated units. Similar 
EJ gaps are observed in control DAs, with generally higher pollution levels across quintiles. 

 
34 In Figure A.22, I also use Material Deprivation Index and the Theil Entropy Index for racial diversity.  
 



QUADERNO GIORGIO ROTA N. 12 – LORENZO SILECI 

   

46 

For all DAs in treated and control CMAs, EJ gaps reduce substantially in the last three years 
of the sample, to 1-1.3 μg/m3 in BC and 0.5-1.2 3 μg/m3in control DAs.  

Reading the statistics reported in Table A.11 and Table A.12 in conjunction, the pollution 
convergence hypothesis is not only confirmed for BC, but emerges as a common trend, 
with EJ gaps shrinking along every dimension across all Canadian DAs in the sample. It is 
thus important to examine whether the 2008 BC carbon tax has had heterogeneous 
contributions along these axes in order to determine winners and losers from climate 
mitigation policy. While the long term air quality improvements illustrated in Figure 3 
accrue more strongly to relatively more deprived areas, this consideration is not causally 
determined in the absence of an appropriate counterfactual for each stratus of the EJ 
dimension under consideration. To estimate the impact of the carbon tax on PM2.5 

emissions at different points of the distribution of EJ characteristics, I split the treatment 
sample into quintiles of baseline35 PM2.5, population density, median income and racial 
diversity. As the SDID methodology	does not allow the inclusion of interaction terms in	
the estimation procedure, I then run SDID separately for each quintile, allowing the data-
driven algorithm to select the combination of control DAs which best approximates the 
outcome path of each quintile split of the treated units (plus a constant). In Figure 4, I 
summarise the results graphically, reporting point estimates and 95% confidence intervals 
at each quintile of the baseline EJ characteristics’ distributions.  

Quintile-SDID results for baseline PM2.5 concentrations are presented in panel (A) of 
Figure 4. It is immediate to infer that greater reductions arise in DAs with lower pollution 
levels between 2005 and 2007. The bottom quintile of baseline pollution indeed 
experience 2.2 times larger reductions with respect to the top quintile. Panel	(B), which 
shows the SDID effects for quintiles of baseline population density, is consistent with the 
results for baseline pollution levels. 

 

 

 

 

 
 

 
35 For time-varying covariates I use the average of the three years prior to treatment as the baseline value; 
for variables retrieved from the Canadian census, I use their 2006 values, i.e. the last observation prior to 
the implementation of the carbon tax.  
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FIGURE 3 • SPATIAL DISTRIBUTION OF THE LONG-TERM CHANGE IN PM2.5 IN BC CMA 
 

 
 

Notes: This figure plots the geographical distribution of changes in PM2.5 concentrations for the Vancouver 
(top panel), Victoria (middle panel) and Abbotsford (bottom panel) CMAs from 2000-2002 to 2014-2016 
(three-year averages).  
 
Denser locations within metropolitan areas see lower reductions of particulate matter with 
respect to less dense DAs, underpinning a worsening of the pollution-density gap. Taken in 
conjunction, these insights appear to confirm that the 2008 carbon tax was not effective in 
curtailing traffic in more central areas within British Columbian metropolitan areas, but rather 
had greater effect in peri-urban locations. More surprising are the results in panel (C), which 
highlight the fact that relatively better off DAs within metropolitan areas have experienced 
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greater reductions, possibly reflecting an inverse relationship between density and income, 
but more importantly signalling that the pollution-income gap has increased as a result of the 
carbon tax. This result is a clear confirmation of the hypothesis of co-benefits regressiveness, 
highlighting how there is an additional distributional dimension that needs to be considered 
when designing climate policy. Finally, panel (D) illustrates how metropolitan areas with a 
lower proportion of visible minorities, i.e. less racially diverse districts, experience greater 
gains in terms of realised air quality co-benefits, a result that is in agreement with the findings 
for baseline pollution and income, which exhibit high correlation with racial diversity. The 
positive findings of a burgeoning EJ literature focussed on the black-white exposure gap in 
the US and on command-and-control regulations (e.g. Currie et al., 2023; Sager and Singer, 
2024) are then not confirmed in the case of British Columbia and a market-based instrument.  

It is important to notice how these results highlight pollution reductions that arise at every 
quintile of the baseline EJ characteristics, compared to a synthetic DID counterfactual of 
no carbon tax implementation. The carbon tax policy thus produces Pareto-optimal air 
quality co-benefits, since every group experiences improvements in pollution exposure after 
its implementation. Compared to a counterfactual scenario of no policy36, the carbon tax is 
thus welfare-improving across the board, a result which could be considered beneficial also 
in terms of environmental justice, with least-advantaged groups observing important 
reductions in pollution exposure. However, the unequal distribution of realised PM2.5 

reductions widens the EJ gap along every considered dimension. This confirms mixed 
evidence from the EJ literature, which claims that while market-based instruments for 
climate mitigation can give rise to inequality-improving air quality co-benefits (Hernandez-
Cortes and Meng, 2023), they can also worsen pre-existing disparities (Grainger and 
Ruangmas, 2018; Shapiro and Walker, 2021; Cain et al., 2024) or result in no significant 
distributional changes (Fowlie et al., 2012). Economic instruments which specifically target 
air pollution, such as command-and-control regulation37 have been shown to produce 
sustained EJ gains (Currie et al., 2023), and may thus be coupled with market-based climate 
mitigation policies38 in order to reap the full set of benefits from regulation and reduce 
environmental inequality between groups, in addition to decreasing pollution exposure 
across groups.  

 
36 As opposed e.g. to the command-and-control counterfactual of Fowlie et al. (2012).  
37 A prime example of which are the National Ambient Air Quality Standards (NAAQS) enforced by the 
US Clean Air Act.  
38 Additional instruments can be aimed at internalising the congestion externality in urban centres and 
reducing local pollution (e.g. Gehrsitz, 2017; Pestel and Wozny, 2021; Sarmiento et al., 2023), with a specific 
focus on policy impacts on disadvantaged communities. Further co-benefits can be generated by public 
transport electrification and incentives for alternative transport modes, as low-income and disadvantaged 
households are relatively more cash and credit constrained.  
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FIGURE 4 • QUINTILE-SDID RESULTS FOR ENVIRONMENTAL JUSTICE GAPS  
 

 
 

Notes: Results of SDID regressions by quintile of baseline characteristics. Panel A) Quintiles of baseline 
PM2.5; B) Quintiles of baseline population density; C) Quintiles of baseline median income; D) Quintiles of 
visible minority share. ATT point estimates reported in red, with 95% confidence intervals calculated with 
the Arkhangelsky et al. (2021) procedure with 200 bootstrap runs in grey shading. 
 
 
8. HEALTH GAINS 

In order to understand the magnitude of the economic co-benefits from air pollution 
reductions arising due to the 2008 carbon tax, I convert the quintile SDID PM2.5 estimates 
into a monetary quantification of the associated health gains. Notwithstanding the relatively 
low concentrations of particle pollution in the the British Columbian context, where pre-
treatment air quality was of substantial better quality than in other North American 
locations (e.g. in the USA), it is important to note that the concept of “safe” thresholds for 
particle pollution concentrations is more normative than positive. Indeed, some studies 
(e.g. Krewski et al., 2009) have highlighted that the marginal benefits from abatement may 
be nonlinear in baseline concentrations, with lower gains from abatement at higher levels 
of baseline air pollution. Hence, any improvement in air quality is likely to carry significant 
benefits in terms of reductions in mortality rates; moreover, the estimates reported in this 
section are a lower bound of the gains from local pollution reductions, as PM2.5 has been 
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shown to have a multidimensional impact, ranging from health to productivity, to cognition 
and the formation of human capital (Aguilar-Gomez et al., 2022).  

Drawing from Fowlie et al. (2019) and Carozzi and Roth (2023), my approach consists of two 
steps. I first estimate the impact of a reduction in PM2.5 concentrations in terms of mortality 
reductions, using concentration-response (“hazard”) functions derived from the 
environmental health literature. Second, I retrieve the central estimate of the willingness to 
pay (WTP) to avoid a premature death from Health Canada (2021) and Chestnut and De 
Civita (2009)39, and multiply the mortality reductions estimated in the first step by the central 
estimate of the Value of a Statistical Life (VSL), equal to $6.5 million in 2007 Canadian dollars, 
for each DA in the census metropolitan areas of Vancouver, Victoria, and Abbotsford.  

The traditional form of the Cox proportional hazard model used in the environmental 
health literature is the log-linear regression reported in Fowlie et al. (2019):  

ln(𝛾) = 	𝜁 + 	𝛼𝑃𝑀!.#	 (5) 

Where ln(𝛾) is the natural logarithm of mortality risk, 𝜁 = ln(𝑍) , and PM2.5 are the  

local pollution concentrations. The term 𝑍 is a vector of covariates other than PM2.5 

which impact mortality, and can be rewritten as 𝑍 = 𝑍9 + exp(𝛽3𝑥3 +⋯+	𝛽:𝑥:), with 
𝑍9 being the mortality risk when all covariates are zero. Indicating 𝛾9$ as the baseline 
mortality risk, and rearranging terms40, the change in mortality rate ∆γi can be related to 
the change in pollution levels ∆𝑃𝑀!.#$ with the following equation:  

	∆𝛾$ =	𝛾9$ [1 −
1

𝑒;∆=>$.&!
] (6) 

In order to find the total number of deaths for each DA associated with the above change 
in mortality rate ∆γi, this quantity needs to be multiplied by the population of each DA41:  

∆𝐷𝑒𝑎𝑡ℎ𝑠$ = 	𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛$ h𝛾9$ [1 −
1

𝑒;∆=>$.&!
]i (7) 

 
39 It must be noted that the reported estimate for the Value of a Statistical Life does not reflect directly the 
economic value of an individually identified person’s life, but rather the aggregation of estimates of the WTP 
for a small reduction in mortality risk. Using the VSL central estimate of $6,500,000, for example, the average 
Canadian would be willing to pay $65 to reduce the risk of premature death by 1 out of 100,000.  
40 The derivation is as follows (Carozzi and Roth, 2023): 

Δ𝛾 = 𝑍-𝑒()*$.&
'
− 𝑒()*$.&( 0 → Δ𝛾 = 𝑍𝑒()*$.&

'
[1 − 𝑒+(()*$.&

' +)*$.&( )]	 
41 I use the baseline population level, that is, the population of each DA in the year 2008.  
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And finally, the monetary health gains in terms of mortality reductions at the DA level, ∆Yi, 
are obtained by multiplying the above estimates by the VSL figure of $6.5 million CAD 
obtained from Health Canada (2021):  

∆𝑌$ = 	𝑉𝑆𝐿 ∗ ∆𝐷𝑒𝑎𝑡ℎ𝑠$	 (8)	 

Hence, in order to estimate the model outlined in Equation 6, and thus obtain mortality 
rate changes at the DA level, I first need to estimate the baseline mortality rate 𝛾9$. 
Consistently with the literature, I obtain data for deaths due to lung cancers, all circulatory 
diseases, and all respiratory diseases from the ICD.10 selected causes of death at the CMA 
level from Statistics Canada (2021a)42. I divide total deaths due to the listed causes by total 
CMA population, and assign the resulting (baseline) mortality rates to all DAs in a given 
CMA. The parameter 𝛼 is usually not directly indicated in epidemiology studies, which 
instead report the relative risk (RR) increase due to a given increase in PM2.5. For instance, 
Lepeule et al. (2012) report an all-cause RR of 1.14 associated with a ∆𝑃𝑀!.# of 10 μg/m3, 
while Krewski et al. (2009)’s estimate is 1.06. However, it is straightforward to retrieve α by 
exploiting the relationship between RR and ∆𝑃𝑀!.#: 𝛼 = ln(𝑅𝑅) /	∆𝑃𝑀!.#. 

I employ these two estimates, in combination with the estimated PM2.5 reductions for each 
quintile of the pre-intervention PM2.5 distribution, in order to calculate the gains from 
mortality reductions at the DA level for the three CMAs included in the treated sample: 
Vancouver, Victoria and Abbotsford. In Figure 5, I visually report the results of this 
exercise for each CMA, using RR = 1.14 as estimated by Lepeule et al. (2012)43.  

The left panel maps the estimated mortality reductions per 1000 people (estimated 
according to Equation 7), while the right panel shows the associated per capita health gains, 
estimated via Equation 8. The median per capita monetary gains due to the estimated 
reductions in PM2.5 are large: $198 when using the Lepeule et al. (2012) RR and $88 with 
the RR from Krewski et al. (2009)44.  

 The monetary value of per capita air quality co-benefits from the BC carbon tax is 1.7 
times of the per capita low income climate action tax credit, i.e. the carbon tax rebate for 
low-income families45. Moreover, the total monetary value of co-benefits ranges between 
$507.2 million and $1.03 billion annually, or 40-81% of annual carbon tax revenues once 

 
42 This is the smallest geographic unit for which the data are available. 
43 Visual results using the RR estimate from Krewski et al. (2009) are reported in Figure A.23.  
44 The same gains are $402 and $178, respectively, if calculated using the ATT estimated with the van 
Donkelaar et al. (2019) PM2.5 dataset instead of Meng et al. (2019). 
45 For this comparison, I use the last revision of the low income climate action tax credit, amounting to 
$115.50 per adult plus $34.50 per child (Ministry of Finance, 2013).  
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the tax reached its $30/tCO2 level in 2012 (Ministry of Finance, 2013). The spatial 
distribution of these gains shows substantial heterogeneity: in particular, it is once again 
striking how air pollution co-benefits seem to be concentrated in peri-urban areas and 
positively correlated with income (see also Figure A.24). The results confirms that co-
benefits from carbon taxation appear to be regressively distributed in metropolitan areas, 
with greater air quality improvements arising in higher income, low pollution DAs, 
underpinning increasing environmental justice gaps, as also evidenced in Section VII.  

FIGURE 5 • MORTALITY REDUCTION AND MONETARY HEALTH GAINS 
 

 
 

Notes: Spatial distribution of mortality reductions per 1000 residents (left panel) and health gains per capita 
(right panel) using the RR estimates from Lepeule et al. (2012), for the Vancouver (top row), Victoria (middle 
row) and Abbotsford (bottom row) CMAs.  
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9. CONCLUSIONS 

This paper connects two areas of extreme importance in environmental economics. Air 
pollution co-benefits from carbon taxation are likely to be as large in magnitude as to 
partially or fully offset the costs of climate mitigation. Incorporating the monetary value of 
air quality improvements in cost-benefit analyses of carbon taxes is essential in order to 
correctly calibrate them and enhance their attractiveness. Conversely, environmental justice 
implications of market-based instruments are an often overlooked dimension due to the 
focus on efficiency, rather than equity. Ignoring potentially regressive consequences in 
terms of the societal distribution of co-benefits could hinder public support towards climate 
policy.  

I show that the introduction of carbon pricing can significantly improve local air quality. 
After the implementation of the 2008 carbon tax, PM2.5 levels dropped by 5.2-10.9% in 
British Columbian dissemination areas, compared to a no policy counterfactual obtained 
through the synthetic difference-in-differences estimator. The air quality improvement is 
driven by reductions in fuel demand and by transport mode switching, mostly in favour of 
public transport. In terms of environmental justice, alongside evidence of Pareto optimal 
improvements for all segments of the population, pollution reduction dynamics are 
significantly regressive, with greater effects found in less polluted, less dense, less racially 
diverse areas and in richer neighbourhoods. Finally, I convert the improvements in air 
quality into reductions in mortality rates and monetary health gains from co-benefits of 
carbon taxation. With a median estimate of $198 per capita, the health gains are large and 
comparable to the rebates offered to low-income families in British Columbia to mitigate 
the impact of the tax on their disposable income, as well as to the total annual revenue from 
the carbon tax at maturity.  

These results highlight an equity dimension of the regressive nature of carbon pricing, 
showing how environmental justice improvements are not a necessary consequence of 
market-based instruments. While addressing complementary global and local 
environmental externalities via a carbon tax can yield significant air pollution and health co-
benefits in addition to climate mitigation, regressive outcomes ought to be considered. 
Instruments designed to attenuate inequitable effects may then be designed in advance of 
the deployment of carbon pricing in order to help closing environmental justice gaps and 
reap greater policy gains.  
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APPENDIX 
 

A1. DESCRIPTIVE STATISTICS AND GRAPHS 
 
FIGURE A.1 • SPATIO-TEMPORAL PLACEMENT OF GROUND AIR POLLUTION MONITORS  

 
Notes: Availability of PM2.5 readings in the National Atmospheric Surveillance Program database between 
2000 and 2018. Lighter colours and larger dot sizes indicate higher availability of readings (monitoring 
stations which were added earlier).  

 
FIGURE A.2 • SATELLITE AND GROUND PM2.5 READINGS 

 

 
Notes: Scatterplot of satellite PM2.5 (Meng et al., 2019) (y-axis) and PM2.5 from NAPS monitoring stations  
(x-axis). Both measures are in μg/m3. The correlation coefficient is 0.597.  
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FIGURE A.3 • SATELLITE AND GROUND PM2.5 READINGS 
 

 
 

Notes: Density plot of satellite PM2.5 (Meng et al., 2019) (y-axis) and PM2.5 from NAPS monitoring stations 
(x-axis). Both measures are in μg/m3.  
 

FIGURE A.4 • TWO REMOTELY SENSED PM2.5 MEASURES 
 

 
 
 

Notes: Scatterplot of satellite PM2.5 (Meng et al., 2019) (x-axis) vs Satellite PM2.5 (van Donkelaar et al., 2019) 
(y-axis). Both measures are in μg/m3. The correlation coefficient is 0.729. 
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FIGURE A.5 • TWO REMOTELY SENSED PM2.5 MEASURES 

 
 

Notes: Density plot of satellite PM2.5 (Meng et al., 2019) (x-axis) vs Satellite PM2.5 (van Donkelaar et al., 2019) 
(y-axis). Both measures are in μg/m3. 
 

 

TABLE A.1 • SUMMARY STATISTICS 2000-2007 
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 N Mean SD N Mean SD 
PM2.5 (van Donkelaar et al. 2019) 175870 9.52 1.54 27920 8.06 1.19 
PM2.5 (Meng et al. 2019) 175870 8.61 2.07 27920 6.95 1.39 
Pop. Density (Rose et al. 2020) 175912 3358.26 3375.33 27920 3169.94 2136.98 
Median Income 43978 26341.65 9088.59 6980 25055.65 8090.75 
Minority Share 43709 18.07 20.7 6926 34.25 26.22 
Theil’s Diversity Entropy Index 43978 0.53 0.47 6980 0.79 0.44 
Material Deprivation Index 20606 46.48 28.60 3313 43.57 28.12 
High Emissions Commute % 43701 74.93 18.33 6926 77.64 16.37 
Low Emissions Commute % 43701 24.52 18.26 6926 21.62 16.26 
Public Transport Commute % 43701 17.02 14.48 6926 13.06 10.68 
Zero Emissions Commute % 43701 7.50 9.43 6926 8.56 10.79 
Precipitation (Abatzoglou et al. 2018) 175870 74.05 21.74 27920 131.20 37.06 
Max Temp. (Abatzoglou et al. 2018) 175870 11.93 1.58 27920 14.55 0.66 
Min. Temp (Abatzoglou et al. 2018) 175870 1.74 2.50 27920 6.46 0.62 
Wind Speed (Abatzoglou et al. 2018) 175870 3.63 0.49 27920 2.98 0.16 

Control Provinces British Columbia 
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TABLE A.2 • SUMMARY STATISTICS 2008-2018 
 

 
 
A2. ADDITIONAL DETAILS ON THE EMPIRICAL STRATEGY 

A2.1. The DID parallel trends assumption 
 

TABLE A.3 • PLACEBO DID REGRESSIONS ON 2000-2007 DATA  
 

 

 

 

 

 

Notes: All point estimates represent the placebo impact of a carbon tax assigned in 2004 during the 2005-
2007 placebo post-treatment period. All regressions use 2000-2007 data. Column (1) uses the Meng et al. 
(2019) PM2.5 data, and column (2) uses the van Donkelaar et al. (2019) PM2.5 data. Standard errors in 
parentheses are clustered at the CMA level.  
 
 
 
 
 
 
 

       

 N Mean SD N Mean SD 
PM2.5 (van Donkelaar et al. 2019) 241865 8.15 1.51 38390 6.09 0.95 
PM2.5 (Meng et al. 2019) 197888 7.35 1.73 31410 6.07 1.10 
Pop. Density (Rose et al. 2020) 241879 3614.39 3365.36 38390 3478.58 2305.69 
Median Income 43978 33324.06 11718.48 6980 31772.63 9765.79 
Minority Share 43825 23.84 22.86 6958 40.2 27.15 
Theil’s Diversity Entropy Index 43978 0.65 0.51 6980 0.89 0.47 
High Emissions Commute % 43806 74.39 20.20 6955 72.94 18.75 
Low Emissions Commute % 43806 25.06 20.12 6955  26.25  18.61 
Public Transport Commute % 43806 18.85 15.89 6955 18.38 13.38 
Zero Emissions Commute % 43806 6.21 10.15 6955 7.87 11.32 
Precipitation (Abatzoglou et al. 2018) 241861 77.57 21.99 38390 134.58 37.33 
Max Temp. (Abatzoglou et al. 2018) 241861 12.32 1.76 38390 14.58 0.86 
Min. Temp (Abatzoglou et al. 2018) 241861 2.11 2.59 38390 6.56 0.80 
Wind Speed (Abatzoglou et al. 2018) 241861 3.64 0.48 38390 3.00 0.19 

 (1) (2) 
 DID DID 

𝜏̂ -0.3754 
(0.1362) 

-1.355 
(0.2390) 

Unit FE Yes Yes 
Year FE Yes Yes 

𝑁#$% 203736 203736 

Control Provinces British Columbia 
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FIGURE A.6 • PM2.5 PRE-TRENDS DIFFERENCES (MENG ET AL., 2019)  

 

Notes: Trends and observations of satellite PM2.5 in British Columbia and an average of all control provinces, 
between 2000 and 2016. The implementation of the carbon tax in 2008 is highlighted by the dashed vertical 
line. Observed data is jittered around the observation year to enhance legibility. A placebo FE regression of 
PM2.5 on the traditional DID indicator with data limited to 2000-2008 and treatment assigned in 2004 
identifies a negative and significant effect, indicating a likely failure of the parallel trends hypothesis. 
 
 

FIGURE A.7 • PM2.5 PRE-TRENDS DIFFERENCES (VAN DONKELAAR ET AL., 2019) 

 
 

Notes: Trends and observations of satellite PM2.5 in British Columbia and an average of all control 
provinces, between 2000 and 2018. The implementation of the carbon tax in 2008 is highlighted by the 
dashed vertical line. Observed data is jittered around the observation year to enhance legibility.  
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A2.2 Comparison between TWFE-DID, SCM and SDID  

In order to formally explain how SDID combines features from TWFE-DID and SCM, 
let me consider a balanced panel with N observations and T time periods. In the British 
Columbian case, the outcome variable is 𝑃𝑀!.#$%, and the binary treatment is 𝐷$%. Let 𝑖	 =
	1, . . . , 𝑁%? be the treated DAs in BC, Let 𝑖	 = 	𝑁%?@3, . . . , 𝑁'A be the DAs in control 
provinces. The baseline TWFE-DID regression problem can be expressed as:  

4𝜏̂&$&, 𝜇̂, 𝜂̂, 𝜃89 = 	 argmin
+,-,.,/

@AA(𝑃𝑀!.#$% − 𝜇 − 𝜂$ −	𝜃% − 𝜏𝐷$%)!
1

%23

4

$23

E (9) 

Which is solved without the use of unit or time-specific weights, but with the inclusion of 
unit and time-specific fixed effects ηi and θt as also illustrated in Equation 2. The SCM 
estimator, instead, does not employ unit fixed effects, but includes time fixed effects and 
unit-specific weights 𝜔$*' : 

4𝜏̂*', 𝜇̂, 𝜂̂, 𝜃89 = 	 argmin
+,-,.,/

@AA(𝑃𝑀!.#$% − 𝜇 − 𝜂$ −	𝜃% − 𝜏𝐷$%)!
1

%23

4

$23

𝜔0*'u E	 (10) 

Finally, the SDID estimator combines features from Equation 9 and Equation 10. Unit 
weights 𝜔$*&$& are chosen such that the pre-treatment outcome path of control DAs are 
parallel to those of the treated units46: 

𝜔9 +	 A 𝜔M$*&$&𝑃𝑀!.#$%	
4'(

$24#)@3

≈
1
𝑁%?

A𝑃𝑀!.#$%

4#)

$23

(11) 

Moreover, time weights λˆsdid need to ensure that the pre-treatment levels for the control 
units differs from the post-treatment levels for the same units only by a constant. Letting 
𝑡	 = 	1, . . . , 𝑇 be the total length of the panel, 𝑇B?(	be the number of pre-intervention 
periods, and 𝑇BA*% be the number of post-intervention periods, the condition can be 
expressed as:  

𝜆9 +	A𝜆D%*&$&𝑃𝑀!.#$%	

1*)+

%23

≈
1

𝑇BA*%
A 𝑃𝑀!.#$%

1

%21*)+@3

(12) 

 
46 When the intercept 𝜔. and the regularisation parameter are set to 0, the unit weights 𝜔! correspond to 
the SCM weights in Abadie et al. (2010). For further details on the procedure used to estimate 𝜁, please refer 
to Arkhangelsky et al. (2021).  
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Thus, the regression problem for the SDID estimator can be expressed as a weighted 
TWFE-DID problem which incorporates unit and time-specific fixed effects 𝜂$ and 𝜃%, 
plus unit and time-specific weights 𝜔$ and 𝜆%, as illustrated in Equation 13:  

4𝜏̂*&$&, 𝜇̂, 𝜂̂, 𝜃89 = 	 argmin
+,-,.,/

@AA(𝑃𝑀!.#$% − 𝜇 − 𝜂$ −	𝜃% − 𝜏𝐷$%)!𝜔0C
*&$&

1

%23

4

$23

𝜆D%*&$&E (13) 

 
 

A3. ADDITIONAL RESULTS AND ROBUSTNESS CHECKS 

A3.1. Matched Difference-in-Differences Plots 
 

FIGURE A.8 • PRE-TRENDS IN PM2.5 AFTER CEM (1) 

 

Notes: Trends and observations of satellite PM2.5 (Meng et al., 2019) in British Columbia and an average of 
all control provinces, between 2000 and 2016. The implementation of the carbon tax in 2008 is highlighted 
by the dashed vertical line. Observed data is jittered around the observation year to enhance legibility. The 
data results from a Coarsened Exact Matching procedure on baseline PM2.5 levels.  
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FIGURE A.9 • PRE-TRENDS IN PM2.5 AFTER CEM (2) 

 

Notes: Trends and observations of satellite PM2.5 (Meng et al., 2019) in British Columbia and an average of 
all control provinces, between 2000 and 2016. The implementation of the carbon tax in 2008 is highlighted 
by the dashed vertical line. Observed data is jittered around the observation year to enhance legibility. The 
data results from a Coarsened Exact Matching procedure on baseline PM2.5 levels and baseline levels of 
population density, median income, high emission commute mode share, and road density.  
 

A3.2. Composition of SDID control pools 
 

FIGURE A.10 • SYNTHETIC BC AT THE DA LEVEL (MENG ET AL., 2019) 

 

Notes: Composition of the synthetic DID unit of Figure 2. Individual DA weights are aggregated up to the 
CMA level.  
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FIGURE A.11 • SYNTHETIC BC AT THE DA LEVEL (VAN DONKELAAR ET AL., 2019) 

 

Notes: Composition of the synthetic DID unit of Figure A.12. Individual DA weights are aggregated up to 
the CMA level.  

 
A3.3. Main results with van Donkelaar et al. (2019) PM2.5 data 
 

FIGURE A.12 • THE IMPACT OF THE 2008 CARBON TAX ON CHANGES IN PM2.5, VAN 
DONKELAAR ET AL. (2019) OUTCOME VARIABLE  

 
 

Notes:	Graphical results from DID, SCM and SDID for PM2.5 concentrations, with van Donkelaar et al. 
(2019) data. Time weights 𝜆" are represented in light red at the bottom of the pre-intervention panel. The 
curved arrows graphically represent the ATT over the post-intervention period.  
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TABLE A.4 • THE 2008 CARBON TAX AND CHANGES IN PM2.5  
 

 

 

 

 

 

 

 
Notes: All point estimates represent the average impact of the 2008 carbon tax during the 2009-2018 post-
treatment period. Standard errors in parentheses are calculated using the bootstrap variance estimation 
algorithm described in Arkhangelsky et al. (2021) with 200 replications. All regressions use 2000-2016 data.  

 

A3.4. Accounting for measurement error à la Fowlie et al. (2019) 
 

FIGURE A.13 • THE IMPACT OF 2008 CARBON TAX ON CHANGES IN PREDICTED PM2.5 

ACCOUNTING FOR MEASUREMENT ERROR  

 

Notes:	Graphical results from SDID for PM2.5 concentrations, with Meng et al. (2019) data (left panel) and 
van Donkelaar et al. (2019) data (right panel). Time weights 𝜆"	are represented in light red at the bottom of 
the pre-intervention panel. The curved arrows graphically represent the ATT over the post-intervention 
period.  
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 (1) (2) (3) 
 DID SCM SDID 

𝜏̂ -0.4954 
(0.0085) 

-0.7087 
(0.1540) 

-0.8896 
(0.0300) 

Unit FE Yes Yes Yes 
Year FE Yes Yes Yes 
𝜔%  Yes Yes 

𝜆!   Yes 

𝑁"#$ 483873 483873 483873 
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TABLE A.5 • THE 2008 CARBON TAX AND CHANGES IN PM2.5, ACCOUNTING FOR  
MEASUREMENT ERROR 

 
 

 

 

 

 

 

 
Notes: Point estimates represent the average impact of the 2008 carbon tax using data from Meng et al. (2019) 
(column 1) and van Donkelaar et al. (2019) (column 2) as the outcome, during the 2009-2016 post-treatment 
period. Standard errors are calculated using the bootstrap variance estimation algorithm described in 
Arkhangelsky et al. (2021) with 200 replications. All regressions use 2000-2016 data. 
 

A3.5. Post-treatment period limited to 2013 
 

FIGURE A.14 • THE IMPACT OF THE 2008 CARBON TAX ON CHANGES IN PM2.5,  
2000-2013 SAMPLE 

 

Notes:	Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al. (2019) data, 
dataset restricted to 2013. Time weights 𝜆" are represented in light red at the bottom of the pre-intervention 
panel. The curved arrows graphically represent the ATT over the post-intervention period.  
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TABLE A.6 • THE 2008 CARBON TAX AND CHANGES IN PM2.5, 2000-2013 SAMPLE 
 

 
Notes: All point estimates represent the average impact of the 2008 carbon tax using data from Meng et al. 
(2019) as the outcome, during the 2009-2013 post-treatment period. Standard errors are calculated using the 
bootstrap variance estimation algorithm described in Arkhangelsky et al. (2021) with 200 replications. All 
regressions use 2000-2013 data. 

 
A3.6. DAs in the Vancouver CMA 
 

FIGURE A.15 • THE IMPACT OF THE 2008 CARBON TAX ON CHANGES IN PM2.5 FOR  
DAS IN THE VANCOUVER CMA 

 

Notes:	Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al. (2019) data, 
dataset restricted to DAs in the Vancouver CMA. Time weights 𝜆" are represented in light red at the bottom 
of the pre-intervention panel. The curved arrows graphically represent the ATT over the post-intervention 
period.  
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TABLE A.7 • THE 2008 CARBON TAX AND CHANGES IN PM2.5, DAS IN THE VANCOUVER CMA 
 

 

 

 

 

 

 

 
Notes: All point estimates represent the average impact of the 2008 carbon tax during the 2009-2016 post-
treatment period, using the outcome variable from Meng et al. (2019) and restricting the sample to DAs in 
the Vancouver CMA. Standard errors are calculated using the bootstrap variance estimation algorithm 
described in Arkhangelsky et al. (2021) with 200 replications. All regressions use 2000-2016 data. 
 

A3.7. DAs matching NAPS monitoring stations 
 

FIGURE A.16 • THE IMPACT OF THE 2008 CARBON TAX ON CHANGES IN PM2.5  

FOR DAS MATCHING NAPS LOCATIONS 

 

Notes:	Graphical results from DID, SCM and SDID for PM2.5 concentrations, with Meng et al. (2019) data, 
dataset restricted to DAs matching NAPS monitoring stations’ locations. Time weights 𝜆" are represented 
in light red at the bottom of the pre-intervention panel. The curved arrows graphically represent the ATT 
over the post-intervention period.  
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TABLE A.8 • THE 2008 CARBON TAX AND CHANGES IN PM2.5,  
DAS MATCHING NAPS LOCATIONS 

 
 

 

 

 

 

 

Notes: All point estimates represent the average impact of the 2008 carbon tax during the 2009-2016 post-
treatment period, using the outcome variable from Meng et al. (2019) and restricting the sample to DAs in 
the Vancouver CMA. Standard errors are calculated using the bootstrap variance estimation algorithm 
described in Arkhangelsky et al. (2021) with 200 replications. All regressions use 2000-2016 data. 

 
A4. ADDITIONAL DETAILS ON MECHANISMS 

A4.1. Fuel demand 

FIGURE A.17 • C-ARIMA RESULTS FOR FUEL SALES 

 
 

Notes:	Graphical results from the C-ARIMA regressions on monthly gasoline and diesel sales. Panel (A) and 
(B) show the observed and forecasted gasoline and diesel sales time series for the full post-intervention 
horizon. Panels (C) and (D) represent the gap between observed and forecasted series for gasoline and diesel 
sales. 95% confidence intervals in grey shading using robust standard errors. 
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FIGURE A.18 • EVENT STUDY RESULT FOR FUEL SALES 

 

Notes:	 Event study regression of monthly gasoline sales at the province level, 1990-2016 data. 95% 
confidence interval in grey shading using standard errors clustered at the province level.  

 
A4.2. Commute mode switching empirical analysis 

Ideally, when concerned with the estimation of PM2.5 reductions arising from the 
implementation of carbon pricing, I would look at DA-level reductions in motor fuel sales 
or in the quantity of vehicle kilometres travelled; however, these data are not available at 
the desired level of granularity for Canada between 2000 and 2018. Moreover, while 
Canadian province-level data on vehicle sales disaggregated by type of fuel is only available 
from 2011 onwards, the post-2011 trends in sales of diesel vehicles are relatively flat (See 
Figure A.20), and the landscape seems to be dominated by gasoline cars (See Figure A.19), 
suggesting that an eventual gas-to-diesel switch caused by the carbon tax incentive would 
have produced all of its results between July 2008 and January 2011 before bottoming out; 
the evidence for this conclusion is not very strong as a result. Another potential mechanism 
behind an increase in air pollution could derive from an exceptionally high rate of 
replacement in BC’s car fleet with respect to other Canadian provinces, caused by the 
willingness of BC’s residents to increase their cars’ fuel efficiency and realise savings at the 
pump. If the savings per each tank refuel were sufficient to offset the increase in gasoline 
prices due to the carbon tax, British Columbian residents could have potentially travelled 
more kilometres than prior to the tax, thereby increasing road congestion and hence 
pollution due to a rebound effect. As shown in Figure A.21 there has indeed been a rapid 
increase in truck and SUV sales in British Columbia after 2008; however, this increase is 
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paralleled by similar jumps in truck sales in all large Canadian provinces47, and it thus seems 
implausible to attribute it to the marginal effect of the carbon tax in raising fuel prices.  

I instead exploit the information contained in the 2001, 2006, 2011 and 2016 waves of the 
Canadian census, which contains data on commute-to-work modes at the DA level for all 
Canadian CMAs. While the information on commute modes is not an exhaustive 
representation of all car trips made in each DA, the granularity of the data may shed light 
on whether residents of DAs located in British Columbia have adjusted their behaviour 
following the implementation of the carbon tax, substituting public transport or active 
commuting modes such as cycling and walking for car trips. In particular, I estimate the 
following	equation:	 

𝑀𝑜𝑑𝑒!" = 𝜏𝐷!" 	+ 𝜃" + 𝜂! + 𝜀!"	 (14) 

Where	𝑀𝑜𝑑𝑒!"	is the share of each commute mode (high emission, low emission, public 
transport and zero emission), 𝐷!"is the carbon tax DID binary variable, 𝜃" and 𝜂! 	are time 
and unit-specific fixed effects, and 𝜀!" is an idiosyncratic error term. In additional 
specifications, I also add a vector of controls 𝑋!" which account for population density, 
median income, and weather covariates (precipitation, maximum and minimum 
temperature, and wind speed), hence the estimating equation becomes:  

𝑀𝑜𝑑𝑒!" = 𝜏𝐷!" 	+ 𝛽𝑋!" + 	𝜃" + 𝜂! + 𝜀!"	 (15) 

I initially run the TWFE-DID regressions for the whole sample, without trimming the 
control pool. In further specifications, I restrict the control sample to the units which 
receive positive 𝜔$ weights in the SDID estimation of the main result, in order to ensure 
comparability across treatment and control cohorts and reduce the reliance on potentially 
violated parallel trends. Further, I retrieve the 𝜔$ weights from the SDID estimation and 
weigh my restricted TWFE-DID regressions with the SDID weights, assigning equal 

weights 3
4#)

 to the treatment cohort.  

 

 

 

 

 
47 Namely, Alberta, Ontario and Quebec.  
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FIGURE A.19 • NEW VEHICLE REGISTRATIONS IN BRITISH COLUMBIA BY MAJOR FUEL TYPES  

 

Notes:	The plot illustrates new vehicle registrations for gasoline and all other fuel types in British Columbia 
between 2011 and 2021.  
 

FIGURE A.20 • NEW MINOR VEHICLE GROUPS REGISTRATIONS IN BRITISH COLUMBIA 

 

Notes:	The plot illustrates new vehicle registrations for low emissions (battery electric, plug-in hybrid, hybrid) 
and diesel fuel types in British Columbia between 2011 and 2021.  
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FIGURE A.21 • PASSENGER CARS VS TRUCK AND SUV SALES IN CANADA MAJOR PROVINCES 

 

Notes:	The plot illustrates 1990-2021 trends in passenger cars and truck and SUV sales, for the four largest 
Canadian Provinces. Top row: British Columbia and Alberta. Bottom row: Ontario and Quebéc.  
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TABLE A.9 • DID RESULTS FOR LOW EMISSIONS COMMUTE MODE 
 

 
Notes: The dependent variable is the dissemination area level share of low emissions commutes. All 
regressions include dissemination area and year fixed effects. Columns (4)-(6) include controls for 
precipitation, maximum and minimum temperature, and wind speed, plus the natural logarithm of 
population and median income. Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which 
receive positive weights in the main SDID regression. 
 
 

TABLE A.10 • DID RESULTS FOR ZERO EMISSIONS COMMUTE MODE 
 

 
Notes: The dependent variable is the dissemination area level share of zero emissions commutes. All 
regressions include dissemination area and year fixed effects. Columns (4)-(6) include controls for 
precipitation, maximum and minimum temperature, and wind speed, plus the natural logarithm of 
population and median income. Columns (2), (3), (5) and (6) restrict the control unit pool to DAs which 
receive positive weights in the main SDID regression. 
 

 

 (1) (2) (3) (4) (5) (6) 

DID 0.0408 
(0.111) 

0.0516 
(0.0103) 

0.0535 
(0.0110) 

0.0457 
(0.0109) 

0.0510 
(0.0113) 

0.0506 
(0.0114) 

DA FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Controls    Yes Yes Yes 

SDID control pool  Yes Yes  Yes Yes 

SDID weights   Yes   Yes 

R2 0.87321 0.84174 0.84532 0.87715 0.84674 0.84996 
Adj. R2 0.83078 0.78876 0.79354 0.83560 0.79490 0.79920 
𝑁"#$ 101358 38769 38769 100244 38348 38348 

       

 (1) (2) (3) (4) (5) (6) 

DID 0.0057 
(0.0025) 

0.0106 
(0.0017) 

0.0117 
(0.0021) 

0.0066 
(0.0022) 

0.0088 
(0.0016) 

0.0092 
(0.0016) 

DA FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Controls    Yes Yes Yes 

SDID control pool  Yes Yes  Yes Yes 
SDID weights   Yes   Yes 

R2 0.80811 0.80808 0.81877 0.81200 0.81355 0.82463 
Adj. R2 0.74390 0.74383 0.75810 0.74841 0.75047 0.76531 
𝑁"#$ 101358 38769 38769 100244 38348 38348 

Zero Emissions Commute Mode 

Low Emissions Commute Mode 
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A5. ENVIRONMENTAL JUSTICE DYNAMICS 

A5.1. Descriptive statistics 
 

TABLE A.11 • TRENDS IN PM2.5 BY QUINTILE OF EJ DIMENSIONS, BRITISH COLUMBIAN DAS  
 

 
Notes: All values are expressed in μg/m3, for British Columbian DAs only. Baseline PM2.5 levels are calculated 
as 2000-2002 averages for all quintiles, post treatment PM2.5 levels are 2014-2016 averages. Quintiles are 
calculated on 2005-2007 levels for population density, and on 2006 Census levels for racial diversity and 
median income.  
 

TABLE A.12 • TRENDS IN PM2.5 BY QUINTILE OF EJ DIMENSIONS, CONTROL DAS  
 

 
Notes: All values are expressed in μg/m3, for British Columbian DAs only. Baseline PM2.5 levels are calculated 
as 2000-2002 averages for all quintiles, post treatment PM2.5 levels are 2014-2016 averages. Quintiles are 
calculated on 2005-2007 levels for population density, and on 2006 Census levels for racial diversity and 
median income.  

 

  EJ Dimension  
 Pop. Density Diversity Income 

  Baseline (2000-2002 Average)  
Top Quintile 8.66 8.83 6.68 

Bottom Quintile 6.48 6.83 8.53 
EJ Gap 2.18 2.01 -1.85 

  Post-treatment (2014-2016 Average)  

Top Quintile 6.63 6.67 5.47 
Bottom Quintile 5.32 5.46 6.49 

EJ Gap 1.31 1.21 -1.02 

  EJ Dimension  
 Pop. Density Diversity Income 
  Baseline (2000-2002 Average)  

Top Quintile 9.88 9.67 8.69 
Bottom Quintile 7.71 8.28 9.60 

EJ Gap 2.17 1.39 -0.91 
  Post-treatment (2014-2016 Average)  

Top Quintile 7.05 7.10 6.41 

Bottom Quintile 5.81 6.13 6.90 

EJ Gap 1.24 0.97 -0.49 
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A5.2. Additional results 
 

FIGURE A.22 • ADDITIONAL QUINTILE-SDID RESULTS FOR ENVIRONMENTAL JUSTICE GAPS  

 

Notes:	Results of SDID regressions by quintile of baseline characteristics. Panel A) Quintiles of Material 
Deprivation Index; B) Quintiles of Theil’s Diversity Entropy Index. ATT point estimates reported in red, 
with 95% confidence intervals calculated with the Arkhangelsky et al. (2021) procedure with 200 bootstrap 
runs in grey shading.  
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A6. POLLUTION, HEALTH AND DISTRIBUTIONAL IMPLICATIONS  

A6.1. Estimates using RR from Krewski et al. (2009) 
 

FIGURE A.23 • MORTALITY REDUCTIONS AND MONETARY HEALTH GAINS 

 

Notes:	Spatial distribution of mortality reductions per 1000 residents (left panel) and health gains per capita 
(right panel) using the RR estimates from Krewski et al. (2009), for the Vancouver (top row), Victoria (middle 
row) and Abbotsford (bottom row) CMAs.  
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A6.2. Health-income relationships 
 

FIGURE A.23 • SPATIAL RELATIONSHIP BETWEEN HEALTH GAINS AND MEDIAN INCOME  

 

Notes:	Bivariate distribution of health gains using the RR from Lepeule et al. (2012) (left panel) and Krewski 
et al. (2009) (right panel) and median income for the Vancouver (top row), Victoria (middle row) and 
Abbotsford (bottom row) CMAs.  
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ALESSANDRA TESTA, KONSTANTIN BOSS1 

 
WHAT GOES AROUND COMES AROUND:  

THE US CLIMATE-ECONOMIC CYCLE 

 

 
 

1. INTRODUCTION 
 

The rise in global socio-economic activity and the accompanying increase in anthropogenic 

greenhouse gas (GHG) emissions that characterized the past century are known to be 

important causes of global warming. Worldwide average surface temperatures have already 

increased by 1.1°C since the industrial revolution and are projected to increase by between 

1.4°C and 4.4°C until 2100 (IPCC, 2023). In turn, temperature increases can lead to lower 

agricultural yields (Deschênes and Greenstone, 2007), more premature deaths (Barreca et al., 

 
1 Boss acknowledges funding under the FPI Grant PRE2020-093941 funded by MCIN/AEI/10.13039/ 
501100011033 and by ESF Investing in your future. We would like to thank Selim Elbadri for a very helpful 
discussion. We also thank Luca Gambetti, Sarah Zoi, Marco Mazzali, Luca Sala, Tajana Dahlhaus and 
Christian Brownlees as well as seminar participants at the 64th Annual Conference of the Italian Economic 
Association (Società Italiana di Economia -SIE), the Banco de España, the Ruhr Graduate School Doctoral 
Conference, Dynamic Econometrics at Oxford, the JRC Ispra, the Centro Einaudi Torino as well as of the 
Bellaterra Macro Club for their very valuable comments. We are also grateful to the Centro Einaudi Torino 
for awarding one of the Giorgio Rota Best Paper Awards 2024 to this paper. 

 

Abstract. We use a spatial data set of US temperatures in a factor-augmented VAR to quantify the 

contribution of the US economy to fluctuations in temperatures over the past 70 years. We show that 

there are at least five distinct sources of broad scale temperature fluctuations in the US and uncover a 

strong relationship of temperatures with aggregate productivity. Disentangling natural from 

anthropogenic effects, we find that economic expansions do not only lead to warming: technology 

improvements initially decrease temperatures, whereas investment and labor supply shocks increase them 

rapidly and persistently. This happens because the cooling effect of aerosol emissions initially outweighs 

the warming effect from greenhouse gases for technology shocks, but not for investment and labor 

supply shocks. Taken together, these economic shocks explain around 25% of long-term temperature 

variation in the US. In turn, temperature shocks induce small contractions in aggregate GDP, but can 

even be beneficial for the economy, when they predominantly hit the western states. 

 

Keywords. Factor-augmented VAR, climate econometrics, temperature shocks, frequency domain 

identification 
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2015), and diminished productivity (Burke et al., 2015), resulting in potentially severe losses 

in welfare (Bilal and Känzig, 2024). 

 

In this paper, we develop an empirical framework for the United States (US) to study how 

economic activity has affected temperatures and vice versa. We use a factor-augmented 

vector autoregression (FAVAR; Bernanke et al., 2005) to model the dynamics of US 

temperatures on a 0.5° × 0.5° spatial grid together with key macroeconomic aggregates. To 

disentangle the effect of human activity on temperatures from the effect of temperatures on 

human activity, we rely on the notion of structural shocks that is common in causal 

macroeconomic inference (Ramey, 2016). We use partial identification techniques to pin 

down three well-established economic shocks in the frequency domain along the lines of 

Forni et al. (2023). First, a technology shock is identified as the main contributor to low-

frequency variation in utilization-adjusted TFP, similar to DiCecio and Owyang (2010) and 

Dieppe et al. (2021). Second, conditional on the technology shock, we identify an investment 

shock in the spirit of Justiniano et al. (2010, 2011) and Auclert et al. (2020) as the main driver 

of business-cycle fluctuations in investment. Third, similar to Shapiro and Watson (1988), we 

identify a labor supply shock as the main driver of the low-frequency component of hours 

worked, conditional on both the technology and investment shocks. On the other hand, we 

rely on statistical arguments to identify temperature shocks. As Angeletos et al. (2020) identify 

an economic “main business-cycle shock,” we apply a similar reasoning to capture the main 

drivers of temperature fluctuations in specific geographic areas, such as the west coast, the 

east coast, the Gulf region, or the non-coastal states, as well as in specific frequency bands, 

for example, at the El Niño-La Niña periodicities. We then compute the impulse responses 

of US real GDP to these shocks. 

 

Based on our analysis, we report the following qualitative results: First, it is insufficient to rely 

on a single measure of national temperatures such as (weighted) averages, as is frequently 

done in the literature (Dell et al., 2012; Burke et al., 2015; Acevedo et al., 2020). This is because 

there is a lower bound of five large shocks driving US temperatures. Average temperatures 

alone only reflect variation in the Midwest region and neglect temperature changes in the 

economically important coastal areas. This happens because the American Midwest is 

affected by strong cold air flows from the North and warm air flows from the South, leading 

to very high temperature variability (Kunkel et al., 2013). Geographic heterogeneity also 

matters for the effect of temperatures on aggregate GDP, a crucial relationship for 

environmental policy-making: If warming affects only the west of the country, this can be net 

positive for the economy, whereas temperature increases generally diminish output slightly. 

Second, we provide evidence for a relationship between temperatures and socio-economic 

activity mostly through changes in TFP. A loss in productivity is thought to be one of the 

main channels for the negative effects of temperature warming (Burke et al., 2015). We argue 



 QUADERNO GIORGIO ROTA N. 12 – ALESSANDRA TESTA, KONSTANTIN BOSS   

    

85 

along the lines of Pretis (2021) that it is important to properly distinguish if temperature 

fluctuations cause productivity changes or vice versa. In the case of the US, we find that the 

majority of the negative co-movement between temperatures and TFP is caused by economic 

shocks. 

 

In addition, we contribute the following quantitative findings to the literature: First, on 

average, a quarter of the low-frequency component of US temperatures can be attributed to 

the three economic shocks, with technology shocks accounting for 10%, investment shocks 

for 11%, and labor supply shocks for 4%. In the east and south of the US, where 

manufacturing and natural resource processing are concentrated, the explained variation 

from technology shocks alone can be as high as 35%. High and medium cycle variations of 

temperatures, on the other hand, are not strongly explained by anthropogenic shocks. The 

economic shocks have small, yet persistent effects on temperatures. While technology shocks 

initially decrease temperatures in the industrial part of the country, this effect recedes in the 

long run despite the permanent effect on economic activity and emissions. Investment shocks 

and labor supply shocks lead to geographically homogeneous warming, in the area of 0.01°C, 

even though the economic expansion is mostly transitory. We argue that decreases in 

temperatures can be explained by a stronger effect of aerosol emissions than GHG emissions, 

whereas warming is observed when aerosols are removed and GHGs emitted. Second, central 

US and east coast-centered increases of 1°C lead to mild losses of aggregate GDP around 

0.1%–0.13%. This is in line with the view that the US, for the most part, has been close to a 

bliss point where temperature warming has so far had essentially zero aggregate effects (see, 

e.g., Dell et al., 2012; Nath et al., 2023; Natoli, 2023). However, shocks that predominantly 

affect temperatures on the west coast can have expansionary effects. We find them to lead to 

up to 0.29% higher GDP after an initial decrease of around 0.32%. This is because when 

increases in temperatures occur in the west, they are accompanied by decreases in the east. 

The net effect of this is positive for aggregate real GDP. Temperature shocks are not 

persistent for temperatures anywhere in the US. 

 

Comprehensive overviews of the climate-econometric literature are provided by Newell et al. 

(2021) and de Juan et al. (2022). The authors show that especially the estimates of economic 

damages from climate change vary substantially across methodologies. We relate to and 

expand the literature that quantifies the effect of temperatures on the US economy. 

Important contributions over the existing empirical literature are as follows: We identify the 

direct effect on temperatures of economic shocks that explain the bulk of macroeconomic 

fluctuations. This is necessary because policy-oriented models such as Cai and Lontzek (2019) 

focus on damages from temperature changes induced by such economic shocks on the 

economy, although usually relying on TFP shocks alone. In addition, we allow the data to 

determine the timing of the effects of emissions on temperatures rather than assuming that 
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economic activity translates into temperature changes with a delay of a year, as is customary 

in the literature (e.g., Donadelli et al., 2017; Goulet Coulombe and Göbel, 2021), since this is 

not supported by climate research (e.g., Joos et al., 2013; Forster et al., 2020). Instead, we 

propose an identification based on statistical arguments with no implied timing restrictions. 

 

Other studies in this area use mostly panel regressions without dynamic causal response 

estimates (e.g., Deryugina and Hsiang, 2014; Colacito et al., 2019; Gourio and Fries, 2020), 

which are less focused on the transmission mechanism of temperature fluctuations to the real 

economy. Kaufmann et al. (2013), Montamat and Stock (2020), and Stock (2020) discuss 

economic processes affecting climate forcing (and thus temperatures), but do not identify the 

stochastic processes explicitly. Empirical studies that compute the effects of economic shocks 

on US CO2 emissions are Khan et al. (2019), Fosten (2019), and Bennedsen et al. (2021), 

however, no explicit connection to temperature changes is made. Since the effect of 

economic activity on temperatures is not exclusively driven by GHG emissions, but also 

other gases such as aerosols, Magnus et al. (2011), Storelvmo et al. (2016), Phillips et al. (2020) 

provide a breakdown of the respective warming and cooling effects. We show that the aerosol 

cooling effect prevails for technology shocks, whereas other business cycle shocks lead to 

warming through a dominant impulse of GHGs. From a methodological view, our paper is 

closely related to Mumtaz and Marotta (2023), Berg et al. (2023), and Bastien-Olvera et al. 

(2022). The first two for the authors' use of a factor structure for temperature dynamics and 

the third one for the frequency domain decomposition of temperatures. While Mumtaz and 

Marotta (2023) use global data to characterize patterns of aggregate temperature movements, 

their study focuses on correlations with economic development indicators. We provide causal 

interpretations for the variations in temperature data and vice versa. Berg et al. (2023) consider 

only a single factor for their global data set, whereas we show that this captures a very 

localized temperature phenomenon. Bastien-Olvera et al. (2022) regress GDP growth onto 

the low-frequency component of average temperatures extracted using a low-pass filter. 

However, as we show, this component is substantially affected by economic shocks, for 

which the authors do not control. 

 

The rest of the paper is organized as follows: Section 2 describes the temperature and 

economic data we use in the empirical model, Section 3 introduces the model and explains 

the identification methodology, Section 4 presents the findings, which are discussed in 

Section 5. Finally, Section 6 concludes. 

 

2. DATA 
 

Temperature data are obtained from the Terrestrial Air Temperature and Precipitation 1900–

2017 Gridded Monthly dataset (Matsuura and Willmott, 2018), which provides monthly 
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mean temperatures over land at a 0.5 × 0.5 degree resolution for the entire globe. The authors 

compute the monthly average gridded data from daily weather station records, considering 

only stations for which no more than five daily data points in a given month are missing. The 

grid cell data are estimated from measurement station averages through spatial interpolation. 

Outliers and unrealistic values that might arise due to measurement error are removed by the 

authors. 

 

3,325 of the grid points are located in the contiguous United States (i.e., excluding Alaska, 

Hawaii, and the US territories). We aggregate the monthly data to a quarterly frequency by 

taking the average over the three months in a quarter and seasonally adjust each time series 

using the deseason() function of the MATLAB Climate Data Toolbox (Greene et al., 2019), 

which centers and linearly detrends each time series and then removes the climatology, i.e., 

the average of each given month in a year. In addition, we weight each grid point by the 

square root of the cosine of the latitude in the center of the cell. This is common practice in 

the literature that computes empirical orthogonal functions (EOFs) from climate data 

(Hannachi et al., 2007) and serves as a means to account for the arc of the earth, which 

changes the size of degree-based grid cells further away from the equator relative to those 

that are closer to the equator. EOFs are, in essence, the loadings of the principal components 

computed for gridded climate data, which can be used to detect patterns such as the El Niño 

Southern Oscillation (ENSO) (Erichson et al., 2020). 

 

We use this method to summarize the information contained in the gridded land surface 

temperature dataset. To determine the number of principal components, we use the criterion 

of Alessi et al. (2010), which suggests using between 8 and 17 factors. For parsimony, we set 

the number of principal components to r=8r=8 and study the effect of choosing r=17r=17 

in a robustness exercise. Figure 1 shows that the time series for average US temperature and 

the first principal component from our dataset are 96% correlated. In addition, Figure 2 

shows that the first principal component – which carries the same signal as the average  

–explains temperature variation only in the Midwest of the US, while important economic 

centers such as the coastal areas are much less well explained. Expanding the information to 

r=8r=8 yields much higher explained variation, in the area of 80% almost everywhere in the 

US. Similar results appear in other large countries of the world, but are not reported here. 

Therefore, the information in average temperatures covered by a single principal component 

is clearly insufficient to capture the full temperature dynamics of the US. Any approach using 

only nationwide averages will likely miss important spatial temperature information. 
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FIGURE 1 • AVERAGE TEMPERATURES IN THE US AND FIRST PRINCIPAL COMPONENT. 
Correlation is 96% 

 
FIGURE 2 • R² FROM REGRESSION OF GRID CELL TEMPERATURES  

ON PRINCIPAL COMPONENTS 
 

 

 
a) First PC 

 

 
 

b) First 8 PCs 

 
The economic data we include are real GDP, real investment, nonfarm-business sector hours 

worked (obtained from FRED), and utilization-adjusted TFP (from Fernald, 2014). All 

economic variables enter the model in log-levels to account for the possibility of co-

integration among economic and climate variables, as pointed out in Pretis (2020). We have 

checked the model in per-capita terms and found no major difference. A detailed account of 

all the economic data used in this paper and their construction is given in the Appendix. The 

sample we use for estimation of the baseline model runs at quarterly frequency from 1948 to 

2017. 
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Figure 3 plots the economic data together with the trend in average US temperatures. 

Temperatures exhibit an initial decrease until around the 1970s, after which they trend 

upwards. The series appear to share a common trend as of the 1970s but diverge again after 

the Great Recession, where the growth rate in temperatures speeds up. 

 
FIGURE 3 • HP-FILTERED TREND IN MEAN CONTIGUOUS US TEMPERATURES  

(𝜆 = 160000) AND LOGARITHMIZED ECONOMIC TIME SERIES  
Shaded areas are NBER recessions. All data are centered and scaled  

To have zero mean and unit variance 

 
3. ECONOMETRIC METHODOLOGY 

3.1. Reduced form data representation 

Our estimation procedure is carried out in two steps, as in factor-augmented vector 
autoregressions (FAVAR) (e.g., Bernanke et al. (2005)) and dynamic factor models (DFM) 
(e.g., Forni et al. (2009)). These models have the advantage that they can accommodate 
datasets with many time series and allow for the straightforward identification of structural 
shocks and their propagation through the methods common in the literature on structural 
VARs (SVARs) (Ramey, 2016). 
 

The model for the temperatures at grid cell 𝑖 at time 𝑡 is given by: 
 

𝑇𝑖𝑡 = 𝜆𝑖𝑌𝑡 + 𝜂𝑖𝑡 (1) 
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where 𝑇𝑖𝑡 are the raw temperatures and 𝜂𝑖𝑡 is the idiosyncratic component. The vector of 

loadings 𝜆𝑖 captures the sensitivity of temperatures at grid cell 𝑖 to the aggregate variables in 

the vector 𝑌𝑡 = [𝑓𝑡 , 𝑦𝑡]′. We combine the principal components 𝑓𝑡  of the temperature data 

with the selected set of economic variables 𝑌𝑡 . This is a simple version of the model in Phillips 
et al. (2020), where we accommodate spatial dependence of temperatures on common 

factors. The reduced form model for 𝑌𝑡  is a VAR of lag order 𝑝: 
 

𝐴(𝐿)𝑌𝑡 = μ + ϵ𝑡,  ϵ𝑡 ∼ 𝑊𝑁(0, Σ) (2) 
 

where μ is a constant term, 𝐴(𝐿) is a matrix polynomial in the lag operator given by 𝐴(𝐿) =
𝐴0 + 𝐴1𝐿 + 𝐴2𝐿2 + ⋯ + 𝐴𝑝𝐿𝑝, and 𝜖𝑡 is a vector of reduced form white noise errors whose 

variance-covariance matrix is given by Σ. Treating the principal components 𝑓𝑡  as observed, 
model (2) is efficiently estimated using OLS for each equation. The lag order is determined 

using the Akaike information criterion, which yields 𝑝 = 2. Higher lag orders do not change 
our results substantially. The reduced form VAR in (2) is assumed to admit a moving average 
(MA) representation given by: 
 

𝑌𝑡 = 𝐶(𝐿)ϵ𝑡 (3) 
 

where 𝐶(𝐿) is obtained by inverting 𝐴(𝐿), and we have dropped the constant as it is 
immaterial for our identification strategy and the model dynamics. 

 
3.2. Identification 

 
To identify economic and temperature shocks, we rely on techniques that have been 
proposed for the study of business cycle fluctuations. Most environmental models focus 
on aggregate productivity shocks as drivers of emissions (Annicchiarico and Di Dio, 2021). 
However, the recent contributions by Angeletos et al. (2020) and Forni et al. (2023) have 
shown that the economy, and by extension also emissions, fluctuates largely because of 
sources that are not purely related to movements in TFP. Therefore, our analysis is set up 
to provide evidence on alternative channels for the effect of socio-economic activity on 
temperatures, beyond RBC-style technology shocks alone. It is most common to 
distinguish fluctuations of high frequency, business cycle frequency, and low frequency. 
Table (1) shows the definitions of frequency bands we adopt for our purposes: 

 
TABLE 1 • FREQUENCY BANDS ADOPTED FOR IDENTIFICATION 

 
The business cycle frequency is between 6 (1.5 years) and 32 quarters (8 years), as is 
common in the economic literature (Angeletos et al., 2020). This definition roughly 
coincides with medium cycles that are observable in climatic data as well. For example, 
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ENSO (El Niño-Southern Oscillation) influences global weather and occurs every 3-5 years 
and lasts for roughly a year (NOAA, 2023). The higher frequencies coincide with the 
strongest fluctuations in our temperature data. This component is most similar to the types 
of weather shocks usually identified in the literature. The low-frequency band is where we 
expect the strongest influence of socio-economic activity to show up, as it contains the 
slight upward trend in the data that is believed to be caused by human beings. Allowing the 
medium-cycle band to include a few more years (e.g., to include the 11-year solar cycles) 
does not affect our results. 
 
The structural MA representation of (3) is given by 
 

𝒀𝒕 = 𝑪(𝑳)𝑺𝑯𝒖𝒕 = 𝑫(𝑳)𝑯𝒖𝒕 = 𝑲(𝑳)𝒖𝒕, 𝒖𝒕 ∼ 𝑾𝑵(𝟎, 𝑰) (𝟒) 
 

where 𝑺𝑺′ =  𝚺, 𝑯𝑯′ = 𝑰, and 𝒖𝒕 = 𝑯′𝑺−𝟏𝛜𝒕. Identification of the structural shocks boils 

down to pinning down columns of the orthonormal matrix 𝑯. The impulse responses of 
the economic variables (subindex E) and of temperatures (subindex T) are then given by  
 

𝑰𝑹𝑭𝑬 = 𝑫𝑬(𝑳)𝑯 (𝟓) 

𝑰𝑹𝑭𝑻 = 𝚲𝑫(𝑳)𝑯 (𝟔) 
 

The notation 𝑫𝑬(𝑳) is shorthand for selecting the rows from each of the matrices in 

D(𝑳) which correspond to the entries of 𝒀𝒕 that belong to economic variables. 𝚲 is the 

matrix containing the vectors of loadings 𝝀𝒊 for each grid cell. 
 
3.2.1. Identification of economic shocks 
 
We identify three economic shocks – a technology shock, an investment shock, and a labor 
supply shock. These are the three shocks proposed as the main business cycle drivers in 
Justiniano et al. (2010, 2011). To do this, we follow the procedure described in Forni et al. 
(2023), which identifies shocks according to their contribution to the cyclical variances of 
key variables. 
 
Consider the structural representation of equation (4). The cyclical variance-covariance 

matrix of all variables in 𝒀𝒕 in the frequency band between [𝛉, 𝛉̅]
′
is given by: 

 

𝑽(𝛉, 𝛉̅) = ∫ 𝑫(𝒆−𝒊𝛚)𝑫(𝒆𝒊𝛚)′𝒅𝛚
𝛉̅

𝛉

(𝟕) 

 
 

where, for example, in the case of business cycle frequencies [𝜽, 𝜽̅]
′

= [𝟐𝛑/𝟑𝟐, 𝟐𝛑/𝟔] 

and 𝒊 is the imaginary constant 𝒊 = √−𝟏 . In practice, 𝑽(𝜽, 𝜽̅) can be obtained by 

computing the average over a grid of values between 𝜽 and 𝜽̅ and taking the real part of 



       QUADERNO GIORGIO ROTA N. 12 – ALESSANDRA TESTA, KONSTANTIN BOSS 

   

92 

this average (or computing the inverse Fourier transform of the right-hand side in the above 

equation). This returns the total variation of all variables in 𝒀𝒕 in the given frequency band 

as the diagonal elements of the matrix 𝑽(𝜽, 𝜽̅).  

 

To identify a particular shock instead, we use a single column 𝒉 of the orthonormal matrix 

𝑯 to obtain: 
 

𝚿(𝛉, 𝛉̅) = ∫ 𝐃(𝐞−𝐢𝛚)𝐡𝐡′𝐃(𝐞𝐢𝛚)′𝐝𝛚
𝛉̅

𝛉

(𝟖) 

 
which is the variation of all variables in the given frequency band stemming from the shock 

associated with column 𝒉. For our identification strategy, we want to target only specific 

variables in a given band, so we select the rows of 𝑫 that correspond to these variables. 

Suppose, for example, TFP is ordered second in 𝒀𝒕 then 𝑫𝒎 for 𝒎 =  𝟐 would select the 
corresponding row. As shown in Forni et al. (2023), this can easily be extended for multiple 
targets. This is discussed in more detail for the case of temperature shocks where we make 
use of this technique. We want to find the shock which contributed the majority of 

fluctuations in the given band to our target variable, so the column 𝒉 is identified as: 
 

𝒉 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉

{∫ 𝑫𝒎(𝒆−𝒊𝛚)′𝑫𝒎(𝒆𝒊𝛚)𝒅𝛚
𝛉̅

𝛉

}  s.t. 𝒉′𝒉 = 𝟏 (𝟗) 

 

The 𝒉 that solves this is the unit-length eigenvector corresponding to the largest eigenvalue 

of the matrix sandwiched in between 𝒉’ and 𝒉 in the above equation (as shown for the time 
domain in Uhlig, 2003). 
 
We first identify the technology shock as the main driver of low-frequency variation in TFP 
as in Dieppe et al. (2021), which echoes the idea of Gali (1999) to identify technology shocks 
as the only long-run driver of labor productivity. Maximization does not imply that a single 
source is responsible for all long-run variation of TFP, but picks out the disturbance that 
contributes the most to its fluctuations. Dieppe et al. (2021) show this method to be more 
robust to interference from other shocks that typically occurs in variance maximization 
approaches such as Barsky and Sims (2011). Conditional on the identified technology 
shock, we then proceed to identifying the investment shock as the main driver of aggregate 
investment over the business cycle. Justiniano et al. (2010, 2011) show that such a shock 
can be interpreted as a shock to the marginal efficiency of capital, that is, how easily 
investment is converted to productive capital. The shock typically induces positive co-
movement between investment and consumption in both representative and 
heterogeneous agent models (Auclert et al., 2020). The conditional shock is identified by 

finding another column of 𝑯 call it 𝒉𝒋: 
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𝒉𝒋 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉𝒋

{∫ 𝑫𝒎(𝒆−𝒊𝛚)′𝑫𝒎(𝒆𝒊𝛚)𝒅𝛚
𝛉̅

𝛉

}  s.t. 𝒉𝒕𝒆𝒄𝒉
′ 𝒉𝒋 = 𝟎 and 𝒉𝒋

′𝒉𝒋 = 𝟏 (𝟏𝟎) 

 
Finally, the labor supply shock is identified similarly to the TFP shock as the main driver 
of hours worked in the low frequency, but conditional on both the technology shock and 
the investment shock. This identification is inspired by Shapiro and Watson (1988) with an 
analogy to the relationship between Dieppe et al. (2021) and Gali (1999). It is easy to extend 
the maximization constraints in the above equation to pin down this labor supply shock. 
 
To check whether our approach delivers valid identification, we study it in a controlled 
experiment using the model of Justiniano et al. (2011). The approach correctly recovers the 
true IRFs to the economic shocks in the majority of cases as reported in the Appendix. 
Moreover, we check if the sequence of conditional identifications matters for the results in 
a robustness exercise. 
 
3.2.2. Identification of temperature shocks 
 
We use a similar method as for the economic shocks to identify temperature shocks. 
Conditional on the three economic drivers, we extract the maximizers of temperature 
fluctuations in our data set. Economic theory can inform the identification of economic 
shocks, whereas there is no clear guideline for the identifying traits of climate-related 
shocks. For example, zero restrictions using a recursive (Cholesky) or long-run neutrality 
(Blanchard-Quah) scheme seem appropriate, as these would have to hold at every 
temperature location in our data set, requiring an impossible number of zero responses to 
be enforced. Maximizing frequency variations of temperatures has the advantage of being 
statistically driven rather than theoretically and allows us to target many temperature series 
simultaneously rather than restricting individual variables. 
 
To do this, we need to extend the above framework slightly. Call the IRFs of the 

temperature variables 𝛀(𝑳) = 𝚲𝑪(𝑳)𝑺 and collect the columns of 𝑯 which identify the 

economic shocks in 𝑯𝑬 = [𝒉𝒕𝒆𝒄𝒉, 𝒉𝒊𝒏𝒗, 𝒉𝒍𝒂𝒃]. Then the maximization program is the 
following: 
 
 

𝒉𝑻𝒋 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒉𝑻𝒋

{∫ 𝛀𝒎(𝒆−𝒊𝛚)′𝑾
𝛉

𝛉

𝛀𝒎(𝒆𝒊𝛚)𝒅𝛚}  s.t. 𝒉𝑻𝒋
′ 𝑯𝑬 = [𝟎, 𝟎, 𝟎]′ and 𝒉𝑻𝒋

′ 𝒉𝑻𝒋 = 𝟏(𝟏𝟏) 

 

As before, 𝒉𝑻𝒋 is a single column of 𝑯 and can be found as the eigenvector of the matrix 

in the quadratic form in the above equation. 𝑾 is a diagonal weighting matrix which 

contains the reciprocals of the square roots of the variances of the 𝒎 targeted variables in 
the frequency band of interest. Given that all our data is measured in degrees Celsius, this 
is less of a concern, but is done for completeness. 
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We do not require the temperature shocks to be orthogonal to each other, only to the 
economic shocks, and inspect the resulting IRFs case by case. This is because the main 
identifying property these shocks have come from geography, which are hardly exclusive. 
Temperature fluctuations on the US west coast, for example, may be driven by additional 
impulses elsewhere in the country. Requiring these impulses to be orthogonal appears too 
restrictive. The targets and bands for identification are chosen as follows: 
 

I. Maximize the low frequency temperature variation everywhere 
II. Maximize the full spectrum temperature variation everywhere 

III. Maximize the full spectrum temperature variation for the West coast (states that 
border the Pacific Ocean) 

IV. Maximize the full spectrum temperature variation for the East Coast (states that 
border the Atlantic Ocean) 

V. Maximize the full spectrum temperature variation for the Gulf of Mexico states 
(Texas, Louisiana, Mississippi, Alabama, Florida) 

VI. Maximize the full spectrum temperature variation for non-coastal states 
VII. Maximize the business-cycle spectrum temperature variation everywhere to capture 

the ENSO pattern 
VIII. Maximize the high-frequency temperature variation everywhere to capture the 

weather shock predominantly used in the literature 
 
The choice is motivated by the geographical patterns we observe in the data, which suggest 
important temperature commonalities in the Midwest, on the coastal regions, and the Gulf 
area. Moreover, the maximizer of low frequency temperature movements will likely pick up 
some non-US socio-economic shocks, and the full-spectrum maximizer is the closest to the 
temperature shock measured in an approach that uses average temperatures, only in this 
case, it is purged of US economic activity. 
 
It is important to point out two properties of the shocks that are identified in our FAVAR 
framework. First, the shocks induce deviations of temperatures at many geographical 
locations in the US from their deterministic components. If the deterministic component 
of temperatures contains any trending behavior, a temperature shock constitutes a deviation 
from this trend. In that sense, explicitly computing the deviation of temperatures from 
some long-term trend and then using these deviations as a shock, as is done in Kahn et al. 
(2021), for example, is very similar, but skips the identification step that tries to pinpoint if 
the deviation comes from human sources or is of natural causes. Second, some climate 
econometric research stresses the importance of extreme weather events as more suitable 
measures of temperature shocks (Natoli, 2023). The shocks that we construct are precisely 
this: they are not predictable from past information about temperatures anywhere in the 
contiguous US and neither from information about GDP, TFP, investment, or hours 
worked. Whether this information set is sufficient is a difficult question to answer. 
Moreover, non-linearities or state-dependence may play an important role in the 
transmission of such shocks, all of which we consider to be important avenues for future 
research. 
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4. RESULTS 

4.1. Descriptive results 

We begin by summarizing the linkages between the US economy and temperatures through 
the lens of the model in equations (1) and (2). As a first exercise, we determine the number 
of shocks that drive US temperatures. In the macroeconometric literature, such shocks are 
sometimes referred to as deep shocks (Forni et al., 2009). We do this by maximizing the 
full-spectrum fluctuations of all US temperature series without conditioning on other 
shocks. Notice that this is done on the spectral density matrix rather than the sample 
correlation matrix used for the computation of the principal components. We repeat the 
same exercise and target the full spectrum of variation in the four economic variables to 
see how these shocks affect temperatures. The outcomes of this are reported in Tables 2 
and 3. 
 

TABLE 2 • CUMULATIVE CYCLICAL VARIANCES EXPLAINED BY THE FIRST SIX SHOCKS  
THAT MAXIMIZE THE FULL SPECTRUM VARIATION OF TEMPERATURES  

AT GRID-CELL LEVEL IN THE US. ROUNDED TO TWO DECIMALS 

 
 

TABLE 3 • CUMULATIVE CYCLICAL VARIANCES EXPLAINED BY THE FIRST SIX SHOCKS THAT 
MAXIMIZE THE FULL SPECTRUM VARIATION OF GDP, TFP, HOURS, AND INVESTMENT 

IN THE US. ROUNDED TO TWO DECIMALS 

 
 

Two important new findings emerge from these tables. First, the common variation in US 
temperatures requires at least five shocks to reach more than 80% explained cyclical 
variance at all frequencies. After the fifth shock, the improvement in explained variance in 
any of the three bands of interest from adding another shock is below 5%. This number 
constitutes a lower bound for the actual number of exogenous temperature drivers, as the 
shocks here are not structurally identified, other than being mutually orthogonal variance 
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maximizers. Based on this result, reducing the effects of temperatures on economic 
aggregates to a single variable such as a (weighted) average, as is frequently done in the 
literature, is implausible. 
 
Second, there is a connection between temperature and economic variation, mostly through 
TFP. The fourth temperature variance maximizer is responsible for a sizable share of TFP 
variation at all frequencies, particularly at the medium part of the spectrum. This seems 
intuitive: the low and medium frequencies are related to the trend in the temperature data 
and it is commonly believed that anthropological forces have contributed to this trend in 
the past half century. Since technology is an important ingredient for economic growth, we 
should expect it to correlate with the lower frequency components of temperatures. 
Moreover, we observe that, in line with the literature (e.g., Forni et al. (2023)), two shocks 
appear sufficient to capture a large share of the cyclical variation in key aggregate economic 
variables. In the low frequency and business cycle bands, hours, investment, and GDP are 
largely driven by the same shock, yet TFP is not. This echoes the findings of Angeletos et 
al. (2020) who also demonstrate a disconnection between TFP and business cycle 
fluctuations of GDP. Interestingly, investment fluctuations of high frequency appear to 
require more than three shocks to be accurately explained. Finally, we see that the second 
shock, which especially drives long-run TFP, is responsible for a large increase in the 
explained variance of average US temperatures. 
 
The descriptive exercise does not allow us to tell apart the respective source of the 
fluctuation. Is the variation in temperatures due to climatic or economic shocks? What part 
of GDP variation is truly due to climatic shocks and which part just masquerades as 
interference from economic shocks? These questions go back to the cyclical nature of the 
climate-economic system, and we need the structural identification exercise explained in 
the preceding section for an answer. 
 

4.2. Semi-structural results 
 

4.2.1. Economic shocks 

We begin by discussing the effects of the economic shocks on the economic variables. This 
is done to confirm that our identification procedure is indeed successful in selecting 
technology, labor supply, and investment related shocks as described in the macroeconomic 
literature. The impulse response functions for this are reported in Figure 4. 
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FIGURE 4 • IMPULSE RESPONSE FUNCTIONS FOR THE THREE STRUCTURAL ECONOMIC SHOCKS 
Shaded areas are bootstrapped 68% and 90% confidence bands 

 

 
 
First, the technology shock leads to an immediate increase in TFP which is accompanied 
by an expansion of real GDP of around 0.4%. Hours initially decline (although this is 
statistically insignificant) and investment increases. These results are very similar to those 
found in Dieppe et al. (2021), who use labor productivity in a spectral identification exercise 
with a different VAR specification. 
 
Second, the labor supply shock leads to a slowly-building increase in output of around 0.3%, 
a mildly hump-shaped response of hours after an initial increase, and an initial reduction in 
investment which is replaced by labor as an input to production. The TFP response is 
almost entirely insignificant, which is partially a result of conditioning on the technology 
shock. The slow-building GDP response is consistent with other studies that identify labor 
supply shocks such as Foroni et al. (2018) (for the US) and Peersman and Straub (2009) (for 
the euro area). The responses of hours and GDP are in line with the paper of Shapiro and 
Watson (1988), which we have used as motivation for the identification strategy. 
 
Lastly, the investment shock creates hump-shaped expansions in investment, hours, and 
GDP and a hump-shaped decline in TFP. These responses are in line with the motivating 
paper of Justiniano et al. (2011). The decrease in TFP is also observed in Ben Zeev and 
Khan (2015) (although in their paper the response is insignificantly different from zero) for 
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investment-specific technology shocks. More inputs are used to produce only slightly more 
output, thus productivity must fall. We take these results as evidence that our proposed 
identification strategy can indeed correctly pick out empirically valid impulse responses in 
a joint identification framework, even though the identification approach is entirely built 
on spectral identification and does not exactly copy the approaches in the originally 
proposed papers. 
 
Next, we describe the responses of US temperatures to the three expansionary economic 
shocks, a key result of this paper. It is important to note that the impact reactions (near 

impulse response horizon 𝒉 = 𝟎) of temperatures across the US to the shocks are difficult 
to measure accurately due to the high volatility of the temperature time series as opposed 
to the macroeconomic aggregates. We therefore prefer not to interpret temperature 
responses to economic shocks near the impact. The graphs in Figure 5 show the following 
picture: the technology shock has a cooling effect on temperatures in the east and the south 
of the US. Importantly, as the impulse horizon increases, the effect dissipates almost 
everywhere, which suggests that eventually, cooling and warming offset each other. The 
effect is persistently significant at the 68% confidence level even after 10 years. The 
investment shock leads to increases in temperatures almost throughout the US after 10 
years, initially dominating in California, Arizona, near the Canadian border, and in the east. 
Finally, a similar pattern emerges for the labor supply shock, although the initial 
temperature responses are less pronounced compared to the investment and technology 
shocks. As far as the magnitudes of the responses are concerned, they range between –0.03 
and 0.01°C (technology shock), -0.01 and 0.02°C (labor supply shock), and –0.01 and 
0.02°C (investment shock).2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2 These values are computed across all horizons and grid cells as a single standard deviation around the 
mean response for each of the three shocks. 
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FIGURE 5 • GRID CELL TEMPERATURE IRFS AT GIVEN HORIZONS IN RESPONSE  
TO THE THREE ECONOMIC SHOCKS 

 

 
 
 
 

a) Tech. shock after 1 year 

 
 

b) Lab. Sup. shock after 1 year 

 
 

c) Inv. shock after 1 year 

 
 

d) Tech. shock after 5 years 

 
 

e) Lab. Sup. shock after 5 years 

 
 

f) Inv. shock after 5 years 

 
 

g) Tech. shock after 10 years 

 
 

h) Lab. Sup. shock after 10 years 

 
 

i) Inv. shock after 10 years 

 
 

j) Tech. shock after 15 years 

 
 

k) Lab. Sup. shock after 15 years 

 
 

l) Inv. shock after 15 years 
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Next, in Table 4 we report the relative importance of each of the three economic shocks in 
explaining average temperature movements, as well as the fluctuations of our economic 
variables at low, business cycle, and high frequencies. 
 

TABLE 4 • INDIVIDUAL CYCLICAL VARIANCES EXPLAINED BY THE THREE IDENTIFIED 
ECONOMIC SHOCKS OVER THE THREE FREQUENCY BANDS 

Numbers in parentheses are the 90% confidence bands associated with the percentage 
above. Rounded to two decimals 

 

 
 
Taken together, the three economic shocks explain around 25% of the low-frequency 
movement of temperatures. Technology and investment shocks contribute the most (10% 
and 11%, respectively), while labor supply shocks contribute less (4%). We conclude from 
this that a non-negligible share of the trend- and long-cycle component of temperatures is 
caused by anthropological activity in the United States. The economic shocks are not 
important sources of average short-term temperature fluctuations, which we interpret as 
evidence that such fluctuations are mostly due to natural or non-US causes. The three 
shocks also appear to be reasonable choices to explain business cycle fluctuations in the 
economy. Together, they account for 87% of the business cycle (BC) variation in GDP, 
87% of the variation in TFP, 97% of the variation in hours, and 89% of the variation in 
investment. 
 
The spatial distribution of explained variances for the three shocks is presented in Figure 6. Given 
that there is hardly any variance arising at medium and short frequencies, we report this only for 
the low frequency. Patches of relevant fluctuations are observable in all three cases. For the 
technology shock, the variances explained are around 35% in the east and in the south, 
particularly in Texas. For the investment and labor supply shocks, the patterns emerge 
predominantly in the south and in the corridor across Colorado, Wyoming, and Idaho, 
where the labor supply shock was cooling. Explained variances for the investment shock 
are locally larger than 40% in some areas in the south, while they are lower in the case of 
the labor supply shock. 
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FIGURE 6 • GRID CELL LEVEL CYCLICAL VARIATION EXPLAINED AT LOW FREQUENCIES 
FROM THE THREE ECONOMIC SHOCKS 
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4.2.2. Temperature shocks 

Next, we turn to the effects of the temperature shocks that are identified as described in 
section 3. For ease of interpretation we have normalized all shocks such that the impact 
response in average temperatures is scaled to 1 degree Celsius, as is customary. We are 
primarily concerned with the effect of temperature changes on GDP as all other economic 
variables were used for identification purposes. Figure 7 summarizes the resulting IRFs. 
 

FIGURE 7 • IMPULSE RESPONSE FUNCTIONS FOR THE DIFFERENT TEMPERATURE SHOCKS. 
Shaded areas are bootstrapped 68% and 90% confidence bands 

 
 

All of the identified shocks lead to small and persistent GDP contractions between 0.1% 
and 0.2%, except for the shock that primarily affects the West Coast of the US. The 
confidence bands are consistently very close to the zero line. This result aligns with the 
majority of the literature, which finds substantial uncertainty in the estimates of temperature 
shocks in the US. For example, Newell et al. (2021) and Nath et al. (2023) find nearly zero 
effects for countries with an average temperature around 13 degrees Celsius, such as the 
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US. Negative effects of temperature shocks in the range of 0.1% are also reported by Natoli 
(2023) (although using an instrumental variable approach), and slightly more negative 
impacts are documented by Colacito et al. (2019). Dell et al. (2012) found insignificant effects 
of temperatures on output in rich countries. These results are consistent with the shock in 
our set that maximizes temperature variation across the entire US over all frequency bands. 
However, our analysis goes beyond this conclusion, revealing that more than one shock is 
needed to capture US temperature variation. In fact, without imposing orthogonality for 
this exercise, the West Coast shock is only 2% correlated with the low-frequency maximizer, 
3% with the full spectrum maximizer, and a relatively low 33% with the East Coast shock. 
Interestingly, it produces a comparatively sizable expansion in aggregate GDP (although 
this is statistically insignificant). This effect would either be lost entirely or blended into 
average results obtained through conventional econometric techniques. As Table 4 
suggests, the share of variation in the economic variables from temperature movements is 
very small, which is why we choose not to report them here. 

 
For illustration of the spatial distribution of impulse responses, we focus on the full 
spectrum maximizer for temperatures everywhere and the West Coast shock. These two 
shocks are only 3% correlated, without the imposition of orthogonality. Figure 8 shows the 
signs of the responses. Clearly, the full spectrum maximizer without geographical 
constraints raises temperatures everywhere except for the West Coast. The shock that 
drives temperatures up on the West Coast simultaneously decreases them in the East. Due 
to the scaling of the average temperature to equal 1°C, the positive responses outweigh the 
negative ones. Both of these shocks are quantitatively important for temperature variations 
(38% and 16% on average, respectively, over all frequency bands). Importantly, we find no 
evidence of significant persistence in either of the temperature shocks considered here. 
After around three years, all effects on temperatures turn insignificant. 
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FIGURE 8 • GRID CELL TEMPERATURE IRFS AT GIVEN HORIZONS IN RESPONSE  
TO THE FULL SPECTRUM AND THE WEST COAST TEMPERATURE SHOCKS 

 

 
a) Full spectrum shock on impact 

 
b) West coast shock on impact 

 
c) Full spectrum shock after 1 year 

 
d) West coast shock after 1 year 

 
e) Full spectrum shock after 2 years 

 
f) West coast shock after 2 years 

 
g) Full spectrum shock after 3 years 

 
h) West coast shock after 3 years 
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To summarize the semi-structural results, we observe that economic sources, particularly 
technology and investment shocks, are locally important drivers of temperature variations. 
These shocks lead to noticeable decreases (technology) and increases (investment, labor 
supply) in temperatures that persist for many years and are noticeable even relatively shortly 
after the initial shock. Treating temperatures as unaffected by anthropogenic forces even in 
the short run can thus lead to confounding causal effects, especially when annual data is 
used, as is customary in the literature. Moreover, it is crucial to distinguish the effects of 
temperature shocks on aggregate GDP based on the geographical location of the shock's 
epicenter. If the West Coast is predominantly affected, GDP may remain unaffected or 
even increase, while shocks in other parts of the country can lead to small contractions. 
This distinction is important for assessing the damages of temperature warming, which are 
incorporated into models used for policy decisions. 
 
 

5. DISCUSSION 

5.1. The effects of economic shocks on temperatures 

The documented effects of the three economic shocks on temperatures across the US 
warrant closer inspection. The connection between economic activity and temperatures 
operates through the emission and storage of climate-active gases. Magnus et al. (2011) 
decompose the temperature effect of anthropogenic gas emissions into warming – through 
the emission of greenhouse gases (GHGs), most prominently CO2 – and cooling –  
through aerosol emissions, most prominently SO2. CO2 is a long-lived, well-mixing gas that 
spreads through the Earth’s atmosphere over time, while SO2 produces quick but more 
short-lived localized cooling by reflecting incoming solar radiation. 
 
There is increasing evidence from the natural sciences literature suggesting that emission 
impulses can lead to temperature effects within a short time span. Notably, Ricke and 
Caldeira (2014) and Zickfeld and Herrington (2015) suggest that CO2 emission impulses 
can lead to significant warming relatively quickly – 93% of the peak warming effects 
materialize after 10-15 years following an emission impulse in their experiments, even 
considering potential non-linearities. Such horizons are well within the customary 
projection range for FAVAR models. Complementary to this, Joos et al. (2013) calculate 
average surface-temperature responses to CO2 emission impulses and find positive 
reactions contemporary with the initial impulse. Methane is another powerful GHG that 
develops much of its effects over a short horizon (Mar et al., 2022). Therefore, our finding 
of quick temperature changes in the US after economic shocks aligns with results found in 
climatology research. Nevertheless, we want to emphasize that the very long run, where 
GHG effects are still active, may be less precisely estimated in our model. 
 
Technology shocks induce cooling in parts of the US east and south. This suggests that the 
solar radiation effect from aerosol emissions outweighs the heating effect from GHG 
emissions at these locations, especially in the short run. We investigate this hypothesis 
further by running the following analysis: to the VAR consisting of GDP, TFP, investment, 
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and hours worked, we add time series for GHGs and SO2 emissions in the US for the same 
sample we used in our previous analysis. The emissions data are available at a yearly 
frequency. The data for GHGs are retrieved from https://ourworldindata.org/greenhouse-
gas-emissions and are based on Jones et al. (2023); the data for SO2 are from Smith et al. 
(2011) until 1990 and from then on from the EPA (https://www.epa.gov/air-emissions-
inventories/air-pollutant-emissions-trends-data). We estimate the VAR with a single lag 
and identify a technology shock and an investment shock in exactly the same fashion as 
before, using frequency domain techniques. 

 
FIGURE 9 • IMPULSE RESPONSE FUNCTIONS OF LOG EMISSIONS TO TECHNOLOGY AND 

INVESTMENT SHOCKS IN THE YEARLY VAR (1) FOR ONLY ECONOMIC VARIABLES. 
Identification in the frequency domain adapted to yearly measurements 

 
 

Figure 9 shows the responses of SO2 and GHG emissions to the two main expansionary 
shocks (technology and investment). The impulse response functions (IRFs) for the other 
economic variables are consistent with the quarterly exercise and are therefore not reported 
again. The permanent shock to TFP also leads to permanent increases in both SO2 and 
GHG emissions. However, the increase in SO2 emissions is about 2% initially and up to 
6% after 15 years, while GHG emissions increase only between 0.5% on impact and slightly 
below 1.5% in the long run. We interpret this as evidence that what we observe in the 
quarterly FAVAR is cooling from increased aerosol emissions. This observation is 
consistent with the localized effects in the south-east of the country, which we discuss 

https://ourworldindata.org/greenhouse-gas-emissions
https://ourworldindata.org/greenhouse-gas-emissions
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
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further below. Importantly, as noted in Magnus et al. (2011), SO2 is itself short-lived. 
Despite the sustained increase in SO2 emissions, the cumulative warming effect from 
GHGs eventually neutralizes the cooling from aerosols in our quarterly FAVAR, which is 
why, as the IRF horizon increases, the cooling effects disappear or even turn into warming. 
For the investment shock, on the other hand, we observe impulses in both SO2 and GHGs 
of equal magnitude. However, the SO2 impulse is only mildly significant for about one year 
before emissions (insignificantly) decrease. GHG emissions increase strongly and persist 
for a longer period, leading to the rapid dissipation of the cooling effect and dominance of 
the warming effect from GHGs throughout the horizon in the quarterly FAVAR. This 
explains why temperature changes after the investment shock are observed across almost 
the entire country and remain significant even after 15 years – there is no sustained 
counteracting cooling effect. 
 

FIGURE 10 • SO2 AND CO2 EMISSIONS ARE COMPUTED FROM EPA’S NEI 2020 DATA SET FOR 
SITE-SPECIFIC EMISSIONS (https://www.epa.gov/air-emissions-inventories/2020-national-

emissions-inventory-nei-data). These include emissions from fossil fuel combustion, industrial 
processes and biomass (e.g. Wildfires), but exclude onroad emissions 

 

 
a) Sulfur dioxide emissions 2020 

 
b) Carbon dioxide emissions 2020 
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Curiously, the geographical pattern of temperature changes following a technology shock, 
as shown in Figure 6, roughly coincides with the locations of important parts of the 
American energy-producing, manufacturing, and natural resource processing industries. 
Figure 10 demonstrates that these areas are also centers of CO2 and SO2 emissions. Conley 
et al. (2018) study the responses of temperatures to the hypothetical removal of all US-based 
SO2 emissions and document a very similar geographical pattern (with inverted signs, as 
they consider SO2 removal rather than emission). Based on this observation, we are 
confident that our economic shocks lead to temperature-altering emissions in the expected 
parts of the country. Furthermore, given the localized nature of aerosol-related cooling, we 
interpret this spatial pattern as evidence that the channel we identify for our technology 
shock is indeed dominated by SO2 emissions. 

5.2. The effects of temperature shocks on GDP 

 
Next, we turn to the discussion of the different effects of west coast-centered temperature 
shocks and the other temperature shocks we have identified. We focus on the full spectrum 
maximizer as a representative of the other shocks and recall that both shocks lead to a one 
centigrade increase in average US temperatures, but the GDP responses present opposite 
signs. Our reasoning for this finding is based on previous results in the literature. 
 
First, consider sector-level responses. Increases in temperatures have been shown to reduce 
output in almost every industry, especially in agriculture and construction (Colacito et al., 
2019). The temperature increase that follows the full spectrum shock affects almost the 
entire US and thus essentially all industries (a notable exception being California), thus 
depressing aggregate GDP. Conversely, the west coast shock leads to increased 
temperatures on the west coast but is accompanied in the data by lower temperatures in the 
east. In our linear model, decreasing temperatures should be beneficial for output in those 
states. The heating in the west does not appear to offset this positive effect. 
 
Second, we turn to geographical differences. Hsiang et al. (2017) provide estimates of the 
projected spatial distribution of climate effects for the US. They calculate a gain in 
agriculture from increased temperatures in the north-west of the country and project overall 
total damages to concentrate in the south-east of the country, whereas the north-western 
states experience positive effects from warming. The largest damages from temperature 
increases go through excess mortality in the densely populated east and the already warmer 
south of the US in their study, also reported by Carleton et al. (2022). Therefore, the 
warming in the west and cooling in the east we document after the west coast shock should 
benefit the western industries and lead to fewer deaths in the east, which sums to a net 
positive effect for aggregate GDP. The full spectrum shock, on the other hand, does not 
produce the warming gains in the north-west but leads to warming in the areas where excess 
mortality has been shown to be of high importance in the transmission of temperatures to 
GDP. 
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In light of these arguments, we carry out the following exercise to better understand how 
the shocks impact state-level income. We expect the full spectrum shock to be damaging 
almost everywhere and the west coast shock to be expansionary, at least in the eastern 
states, but potentially also in the west. To do this, we run the following local projections 
(Jordà, 2005) for each state in the contiguous US individually: 
 

𝑦𝑡+ℎ = μℎ + βℎ𝑠𝑡̂ + γℎ(𝐿)𝑦𝑡−1 + ϵ𝑡+ℎ,  for h = 1, 2, … , 40 (12) 
 

where 𝑦𝑡+ℎ is the log of quarterly real personal income,3 𝜇ℎ is a constant, 𝑠𝑡̂ is alternatively 

the unit variance full spectrum or west coast shock estimated in the FAVAR, 𝛾ℎ(𝐿) is a 

lag-polynomial of order two as in the FAVAR, and 𝜖𝑡+ℎ  is a forecast error. The coefficient 

𝛽ℎ measures the response to the shock of interest at each horizon ℎ. 
 
Figure 11 shows that the full spectrum temperature shock indeed decreases income in 
nearly all states, except for New York, which nonetheless experiences reductions in income 
for most of the horizon. The west coast shock, on the other hand, produces mixed impulse 
response functions (IRFs). The majority of economically large states (by share of national 
GDP) experience income increases, except for Colorado, Florida, and Texas, where the 
losses are relatively small. Big west coast economies such as California and Washington see 
long-run benefits from the shock, although these are small in magnitude. We take the 
evidence from this auxiliary model as supportive of the idea that temperature increases, in 
general, are detrimental for output, possibly by increasing mortality or lowering 
productivity. However, we caution that a measured increase of average US temperatures of 
one degree Celsius can come in different shapes, which produce different dynamics at the 
state level and then translate into different aggregate responses. We believe that our two 
example shocks are good representations of actual co-movement in temperatures 
experienced in the US. Any exercise focusing on the simple average temperature, which is 
similar to the full spectrum maximizer, will likely miss the effects induced by the west coast 
shock and may lead to incomplete conclusions for damage functions and policy 
implications. 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 Personal income data at the state level at quarterly frequency is collected from BEA table SQINC4 and 
deflated using the GDP deflator and alternatively the CPI. The sample spans Q1:1948 - Q4:2017. 
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FIGURE 11 • IMPULSE RESPONSES TO THE FULL SPECTRUM AND THE WEST COAST 
TEMPERATURE SHOCKS IDENTIFIED IN THE FAVAR  

IRFs are obtained by means of a local projection of real personal income at the state level 
onto its own lags and the identified unit variance shock. The states with name tags are 

the largest 15 states by GDP. Blue lines indicate negative responses after 40 quarters. Red 
lines indicate positive responses after 40 quarters 

 

 
a) Full spectrum shock on real personal income 

 
c) West coast shock on real personal income 
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6. CONCLUSION 
 
We model an empirical joint climate-economic system to investigate the effect of economic 
shocks on temperatures in the US and vice versa. Using the principal components of a 
large, gridded dataset of US temperatures, we show that at least five shocks are necessary 
to accurately reflect temperature variations of different frequencies everywhere in the 
contiguous US, calling into question papers that use a single “climate shock” or focus on 
cross-sectional averages to reflect temperature warming. We show that a clear connection 
between the economy and temperatures exists, which is mostly driven by changes in Total 
Factor Productivity (TFP). We identify three economic shocks, arguably responsible for the 
bulk of business-cycle and long-term variation in the US economy and thus emissions of 
climate-active gases – a technology shock, a labor supply shock, and an investment shock. 
Identification in the frequency domain allows us to mix medium-term and long-term 
identification assumptions. There is clear evidence that economic activity has affected US 
temperatures. Together, the three shocks account for around 25% of the low-frequency 
component of US temperatures. Investment shocks increase temperatures on average, 
technology shocks decrease them, and we explore the reasons for this by showing a 
significant role for aerosol emissions that induce local, short-lived cooling and greenhouse 
gas (GHG) emissions that lead to slow-paced, encompassing warming. 
 
On the other hand, the economic damages from changing temperatures are small and come 
with substantial uncertainty. We show that temperature changes that affect primarily the 
US west coast lead to small economic expansions, as they are accompanied by decreasing 
temperatures in the east and south. Shocks raising temperatures elsewhere are mildly 
recessionary, suggesting that the US has been well-adapted to temperature change in the 
past. 
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APPENDIX 
 

A DATA CONSTRUCTION 
 
We follow Angeletos et al. (2020) in constructing the economic variables. 
 

TABLE 5 • ECONOMIC DATA SOURCES AND TRANSFORMATIONS 

 
 

The variables enter the model as follows: 
 
1. Real GDP: log(GDPC1) × 100 
2. Real investment: log((DDURRE1Q156NBEA + A006RE1Q156NBEA) × GDPC1) × 100 
3. Hours: log(PRS85006023 × CE16OV ) × 100 
4. TFP: cumsum(dTFPU/400) × 100 
5. Population: GDPC1/A939RX0Q048SBEA 
 

For checks, the variables real GDP, real investment, and hours can be transformed to per 
capita units by dividing by the population level as computed above before taking logs. 

 
 
B BOOTSTRAP PROCEDURE 
 
We compute confidence bands for the IRFs and the cyclical variances using the following 
bootstrap procedure: 
 

1. 1.Use (2) to generate a new vector 𝒀𝒕by bootstrapping from the reduced form 
residuals. 

2. Use the method of Kilian (1998) to correct the bias of the OLS estimates. 

3. Use 𝚲 to recompute the common component of temperatures, 𝚲𝒀𝒕, and add the 

original idiosyncratic component, 𝛈𝒊𝒕, to get a new data set of US temperatures. 
4. On this new data set, estimate r = 8 principal components, and re-estimate a 

bootstrap 𝚲𝑩. 

5. Estimate the FAVAR in (2) again with 𝒑 = 𝟐. 
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6. Identify the shocks sequentially, compute IRFs and the cyclical variances. 
7. Repeat this 1, 500 times to obtain bootstrap distributions of the IRFs and the 

cyclical variances. 
8. Find the quantiles of the bootstrap distributions to get the 68% and 90% intervals. 

 
C  ROBUSTNESS CHECKS 
 
To test the sensitivity of our results to the underlying assumptions, we conduct the 
following robustness checks: 
 
1. Changing the number of temperature factors: 
We originally used a statistical criterion to determine the number of factors to be extracted 
from the gridded temperature dataset, opting for r=8 for parsimony. The upper bound 
recommended by the criterion was r=17, which we also test. In this case, we set p=1 
according to the Bayesian Information Criterion (BIC). 
 
2.  More lags: 
Our results focus primarily on the low-frequency components of temperatures. To address 
potential inaccuracies due to a very short lag length, we test an increased lag length. In the 
baseline specification, p=2; here, we increase this to p=4. Given the frequentist approach 
to estimation, results become quite erroneous for even larger lag orders. 
 
3. Sub-sample analysis (1970): 
The dataset used spans from 1948 to 2017. The trend in temperatures attributed to human 
influence becomes very pronounced around 1970. Additionally, SO2 emissions in the US 
start to decline from the 1970s. We repeat our analysis by excluding the first 22 years from 
the sample to observe any changes. 
 
4. Potential interference from outside shocks: 
Non-US shocks may drive business cycle (BC) and low-frequency (LF) variation in US 
aggregates, affecting temperatures. Although the US is typically considered to have frontier 
technology (Nath et al., 2023), shocks from China might spill over and be misidentified as 
US shocks. Given the challenge of obtaining long quarterly time series for China, we use 
annual series for CO2 emissions, which show a significant increase from 2000. We thus cut 
the sample at Q4:1999 to check for potential external influences from China. 
 
5. Maximizing long-run IRFs instead of variances: 
As an alternative to maximizing variances, we explore maximizing the long-run IRF of Total 
Factor Productivity (TFP) and hours, as suggested in Forni et al. (2014). This approach is 
crucial since the connection between the economy and temperatures largely runs through 
TFP, making accurate identification of the technology shock essential. 
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6. Variables in per capita terms: 
Long-run economic dynamics may be affected by demographic changes (Francis and 
Ramey, 2009), which are not explicitly accounted for in our baseline specification. 
Population changes are a significant source of emission variations according to the Kaya 
identity. We check whether expressing economic variables (GDP, hours, and investment) 
in per capita terms alters our results. 
 
Robustness Results: 
 
The results are generally insensitive to changes in lag order, number of factors, or 
specification of variables in per capita terms. Minor changes are observed for sub-samples 
and when altering the long-run identification assumption, as detailed in robustness check 
5. Figure 12 illustrates the IRFs for average US temperatures in response to economic 
shocks. The most notable differences occur when changing the sub-samples to post-1970 
and pre-2000. In these cases, the technology shock leads to positive temperature responses 
due to the diminished role of SO2 emissions and other aerosols in cooling temperatures 
after 1970. Similarly, excluding the more recent period attributes some cooling to the 
investment shock, as the reduction in SO2 emissions has not yet fully materialized. These 
changes, while interesting, underscore the significance of this additional channel for the 
transmission of economic activity to temperature changes. 
 

FIGURE 12 • IMPULSE RESPONSE FUNCTIONS OF US AVERAGE TEMPERATURES TO 
ECONOMIC SHOCKS FOR ROBUSTNESS CHECKS 1-6. 
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Figure 13, on the other hand, reports the IRFs of real GDP to the different temperature 
shocks for all robustness checks. We observe that changing the number of temperature 
principal components or the number of lags has negligible effects on the IRFs compared 
to our baseline specification. The same goes for taking the variables in per capita terms. 
Changes in the responses of GDP to the temperature shocks are slightly more pronounced 
if we use labor productivity instead of TFP or the maximal response identification strategy 
to obtain the technology shock and then condition the temperature shocks on it. All in all, 
the baseline specification lies roughly in the middle of the IRFs under the different 
robustness checks. We leave the robustness check IRFs of the economic variables to the 
economic shocks in the Appendix since the only minor difference arises when using the 
response maximization approach over the cyclical variance maximization approach. 

 
FIGURE 13 • IMPULSE RESPONSE FUNCTIONS OF GDP TO TEMPERATURE SHOCKS  

FOR ROBUSTNESS CHECKS 1-6 
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FIGURE 14 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES TO ECONOMIC 
SHOCKS FOR ROBUSTNESS CHECKS 1-6.

 
 

Lastly, we check if the sequence of conditional identifications matters for our results. We 
therefore permute the identification order of the three economic shocks – technology (T), 
investment (I) and labor supply (H) – to allow for all possible orderings and report the 
economic and temperature IRFs. 
 

FIGURE 15 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES FOR DIFFERENT 
ORDERINGS OF IDENTIFICATION. 
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FIGURE 16 • IMPULSE RESPONSE FUNCTIONS OF AVERAGE TEMPERATURES  
FOR DIFFERENT ORDERINGS OF IDENTIFICATION 

 
Figures 15 and 16 show that while there are some differences in the responses of the 
economic variables if the investment shock is identified first, these do not translate to 
changes in the more important results for temperature changes following the economic 
expansions. 

 
D SIMULATION EXERCISE 

 
We simulate 1,000 instances of the model proposed by Justiniano et al. (2011) using the 
Macroeconomic Model Data Base in Dynare (Wieland et al., 2012, 2016), adhering to the 
standard settings without modifications. Each simulation includes data for GDP, Total 
Factor Productivity (TFP), hours worked, and investment, along with additional series that 
are not considered for this exercise. For each of the 1,000 simulations, we extract the true 
Impulse Response Functions (IRFs) for neutral technology shocks, investment shocks, and 
wage markup shocks (which have a similar interpretation to our labor supply shocks). We 
then apply our sequential identification strategy to identify these three structural shocks in 
the frequency domain using a VAR(4) model with the four economic time series of interest. 
 
In the model of Justiniano et al. (2011), the neutral technology shock is the sole driver of 
TFP growth, the wage markup shock is the primary factor influencing low-frequency 
changes in hours worked, and the investment shock predominantly affects investment 
variation in the business cycle band. Consequently, our identification approach is 
theoretically validated for this case. 
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FIGURE 17 • IMPULSE RESPONSE FUNCTIONS OF ECONOMIC VARIABLES TO ECONOMIC 
SHOCKS FROM SIMULATED DATA AS PER JUSTINIANO ET AL. (2011) 

 
Figure 17 shows the bands resulting from the 1,000 identification exercises on simulated 
data as well as the theoretically true IRFs. Our VAR-based approach is very successful in 
capturing the correct dynamics in the vast majority of the simulation runs. This gives us 
confidence that it may also be useful in a purely applied setting. 
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COSTANZA TOMASELLI 
  

GREEN OR GREED? UNVEILING THE ENVIRONMENTAL  
IMPACT OF MARKET CONSOLIDATION ON CARBON EMISSIONS 

 

 
 

1. INTRODUCTION 
 

Product market competition is of paramount importance for a well-functioning economy. It 

is a well-studied fact that competitors and new entrants push incumbent companies to set 

prices that reflect costs, which benefit customers. Firms with higher market power can set 

high prices, which has negative implications for society welfare, and resource allocation, can 

decrease the demand for labor and dampens investment in capital, it distorts the distribution 

of economic rents, and it discourages business dynamics and innovation (De Loecker, Jan 

Eeckhout, and Unger, 2020). For this reason, functioning of markets and the protection of 

consumer rights have been a priority for governments in the past decades. Specifically, 

countries have implemented competition policies aimed at regulating abuse of market power 

and protecting consumers. 

 

On the other side, in recent years, another government priority has rapidly emerged. The 

increasing scientific evidence and the heightened frequency of extreme weather events 

underscore the urgent need for countries to rapidly decarbonize. Climate change poses a 

significant threat to economic stability, public health, and global ecosystems. The 

Intergovernmental Panel on Climate Change (IPCC) has highlighted the catastrophic 

consequences of failing to limit global warming to well below 2 degrees Celsius above pre-

 

Abstract. This paper explores the relationship between market concentration and environmental 

performance, with a particular focus on the aftermath of mergers. Drawing from foundational economic 

principles, I hypothesize that increased market power, typically associated with reduced output relative 

to competitive market conditions, could similarly influence a firm’s emissions profile, potentially lowering 

Greenhouse Gas (GHG) emissions. This hypothesis introduces a complex tension between two pivotal 

policy objectives: the reduction of emissions and the preservation of competitive market structures. 

Novel empirical findings suggest that mergers exhibit a comparable positive impact on environmental 

indicators. This insight paves the way for a broader discussion on the dual objectives of companies in 

merger scenarios—increasing their market power versus achieving environmental efficiency. 

 

Keywords. Market concentration, climate risks, emissions, social welfare. 
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industrial levels IPCC (2018). The economic impacts of climate change are profound, including 

reduced agricultural productivity, increased health care costs, and more frequent and severe 

natural disasters, which collectively threaten global economic growth Nordhaus (1991). 

 

To mitigate these risks, governments have announced and implemented various environmental 

policies aimed at reducing carbon emissions. One of the most prominent initiatives is the 

European Union Emission Trading Scheme (EU ETS), which sets a cap on the total amount 

of greenhouse gases that can be emitted by covered entities and allows companies to buy and 

sell emission allowances Ellerman, Convery, and PERTHUIS (2010). This market-based 

approach incentivizes companies to innovate and reduce their emissions cost-effectively. 

Furthermore, studies have shown that carbon pricing mechanisms, such as the EU ETS, are 

essential tools in the transition to a low-carbon economy, as they internalize the external costs 

of carbon emissions and encourage investments in cleaner technologies Stern (2007). 

 

This study explores the interplay between market concentration and environmental 

performance, with a particular emphasis on the aftermath of mergers. Given the scrutiny 

mergers attract from competition authorities due to potential market power implications and 

consumer harm, this research investigates a nuanced question: do mergers lead to a reduction 

in greenhouse gas (GHG) emissions for the consolidated entities compared to their pre-

merger states? Drawing on fundamental economic theories, I hypothesized that increased 

market power, often resulting from mergers, may lead to reduced production levels. This 

reduction in output, when applied to the domain of environmental emissions, suggests that 

a more concentrated market could potentially lower GHG emissions. Alternatively, merged 

entities have access to better technology or better management, due to economies of scale 

and/or scope and improve their environmental footprints, without reducing their production 

levels. This hypothesis introduces a complex dynamic between the objectives of emissions 

reduction and the maintenance of competitive market structures. 

 

Firstly, I set up a model which focuses on the nuanced dynamics between oligopolistic 

competition, environmental consciousness among consumers, and the impact of mergers on 

environmental emissions within a simplified economic model. The model, which 

encapsulates a scenario with two firms producing differentiated products amidst price 

competition, suggests a pivotal trade-off between prices and emissions in the presence of 

consumer environmental awareness. The analysis reveals that post-merger outcomes hinge 

on the magnitude of production efficiencies realized: significant efficiencies lead to increased 

output, lower prices, and higher emissions, whereas minimal efficiencies result in higher 

prices but lower emissions, showcasing the environmental benefits of reduced production. 

This trade-off underscores the complex relationship between competitive market behaviors 

and environmental impacts, highlighting how mergers can both exacerbate and mitigate 
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environmental damage depending on the resultant operational efficiencies. Furthermore, we 

introduce the potential for mergers to foster green innovation, proposing that beyond mere 

output adjustments, mergers may incentivize investments in environmentally friendly 

technologies, thus offering a pathway to reducing emissions. This dual-faceted view 

illuminates the intricate ways in which market consolidation can influence environmental 

outcomes, emphasizing the role of consumer preferences, technological innovation, and 

efficiency gains in shaping the ecological footprint of oligopolistic markets. 

 

This paper employs two empirical strategies to investigate the impact of corporate mergers 

on Scope 1 absolute emissions. Firstly, a panel event study methodology is utilized to analyze 

the temporal effects of mergers on emissions, building on the works of Miller (2023) and 

Chaisemartin and D’Haultfoeuille (2020). This approach examines changes in emissions 

before and after the merger, controlling for unobserved heterogeneity across firms and over 

time. Secondly, a quasi-experimental design is adopted to address the endogeneity of merger 

selection. Inspired by Seru (2014), Bena and Li (2014), and Gugler et al. (2003), this approach 

compares firms that completed mergers (treatment group) with those that announced but 

subsequently cancelled their mergers (control group). By leveraging the difference-in-

differences (DiD) framework, this strategy isolates the causal impact of mergers on emissions. 

 

Overall, both empirical strategies provide evidence that mergers, particularly horizontal ones, 

in line with the hypothesis of a correlation between increased market power and reduced 

emissions, lead to a decrease in corporate emissions, highlighting the environmental benefits 

of market consolidation. This observation suggests that corporate consolidation might have 

implications for environmental performance, presenting a more complex picture than the 

traditional view that mergers primarily fulfil economic or financial goals. This analysis 

contributes to understanding how dynamics of market concentration, as a result of mergers 

and acquisitions, can impact a firm’s environmental footprint. It highlights the importance of 

distinguishing between the sources of environmental benefits, advocating specifically for 

technological advancements as a key factor for improved environmental outcomes post-

merger, rather than market concentration. Through this nuanced approach, the study adds to 

the ongoing conversation about the interplay between corporate strategy, market structure, 

and sustainability, emphasizing a balanced consideration of technological innovations 

alongside economic objectives.  
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2. LITERATURE REVIEW 

Market concentration, which is also used as a substitute for competition intensity, can be 

defined by the extent to which market shares are concentrated between a small number of 

firms (OECD, 2018). Recent decades have seen a drastic change in market structure and 

concentration. The latest publications have noted a trend for increased industry 

concentration in the United States (Furman and Orszag, 2015; Autor et al., 2020). On the 

contrary, the more current literature has not reached a consensus on the direction of 

concentration for Europe; Gutierrez and Philippon (2023) found that competition in 

Europe increased, due to independent regulators and appropriate competition policies, 

while Koltay, Lorincz, and Valletti (2023) observe a moderate increase in European industry 

concentration and a trend towards oligopolies. 

On mergers, there is existing literature on the importance of mergers for market 

concentration and industry links (Ahern and Harford, 2014). Part of the literature on 

mergers focuses on their negative impact on consumer choice and whether merger 

threshold is appropriate, Nocke and Whinston (2022) find that current concentration levels 

are likely too permissive and could contribute to increase in prices which might harm 

consumers. If not screened properly mergers could also have other negative impact, i.e. on 

their own workforce, Berger et al. (2023) suggest that suggest that workers are harmed, on 

average, under the enforcement of the more lenient 2010 merger guidelines. Another side 

of the literature focuses on which companies merge, Crouzet and Eberly (2019) have found 

that companies with a high level of intangibles over their total assets, such as intellectual 

property and software, tend to have higher market power and increase market 

concentration over time, and whether mergers could be a positive incentive for innovation 

(Phillips and Zhdanov, 2013). 

Mergers and acquisitions (M&A) are complex processes often fraught with various 

challenges that can lead to their failure even after being publicly announced. Several 

economic studies have explored the multifaceted reasons behind such outcomes. One 

significant factor is regulatory intervention. Regulatory bodies like antitrust authorities 

often scrutinize proposed mergers to ensure they do not create monopolistic entities that 

could harm consumers. For instance, Eckbo (1983) discuss how horizontal mergers are 

particularly prone to regulatory challenges due to potential anti-competitive effects. The 

study highlights that about 30% of proposed mergers fail due to regulatory rejections. 

Another critical reason is financing issues. Kaplan and Stromberg (2009) note that mergers 

often rely on significant amounts of debt financing. Adverse changes in credit markets or a 

re-evaluation of the target company’s value can lead to financing shortfalls, causing the 

merger to collapse. The volatility of financial markets thus plays a crucial role in the 
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completion of M&A deals. Cultural clashes between merging entities also contribute to the 

failure of mergers. Weber, Shenkar, and Raveh (1996) emphasize that differences in 

corporate culture can lead to integration problems, resulting in operational inefficiencies 

and employee dissatisfaction. These cultural mismatches can become apparent during the 

due diligence process, leading to a reconsideration of the merger. Furthermore, changes in 

economic conditions can alter the strategic rationale for a merger. Shleifer and Vishny 

(2003) explain that stock market fluctuations can affect the perceived benefits of a merger. 

If the market conditions change significantly after the announcement, the acquiring 

company might find the merger less attractive, leading to its termination. In some cases, 

the due diligence process uncovers unforeseen liabilities or operational challenges. 

Krishnan, Hitt, and Park (2005) discuss how the discovery of such issues can cause 

acquiring firms to reassess the viability of the merger, often resulting in cancellation to avoid 

future financial burdens. Finally, shareholder opposition can also derail mergers. 

Shareholders of either the acquiring or target company may believe that the merger does 

not align with their financial interests. According to Mulherin and Boone (2000), active 

resistance from major shareholders can lead to the abandonment of the deal. 

With respect to the literature on corporate emissions, several key drivers have been 

identified that influence firms’ greenhouse gas outputs. One significant factor is the size 

and scale of the firm, as larger firms tend to have higher absolute emissions due to greater 

production volumes and energy consumption Cole and Elliott (2006). Additionally, 

industry-specific characteristics play a crucial role; sectors such as manufacturing and energy 

are typically more emission-intensive compared to service-oriented industries Duflo, 

Greenstone, and Hanna (2008). Regulatory environments and environmental policies are 

also critical drivers, as stricter regulations and effective enforcement can lead to significant 

reductions in emissions Kumar and Managi (2012). Firms’ technological capabilities and 

innovation activities are another important determinant, with companies investing in green 

technologies often achieving lower emission levels Porter and Linde (1995). Furthermore, 

market pressures and consumer demand for sustainable practices can incentivize firms to 

adopt greener practices, thus reducing their carbon footprint Delmas and Montes-Sancho 

(2011). Finally, financial performance and access to capital markets can influence a firm’s 

ability to invest in emission reduction technologies and practices, as better-performing 

firms are more likely to allocate resources towards sustainability initiatives Eccles, Ioannou, 

and Serafeim (2014). 

This paper contributes to the more recent literature of the impact of non-market effects of 

market power and market concentration. With respect to the impact on policies Kang and 

Xiao (2023) find that a company’s actions can significantly reduce government pro-

competitive policies, while Yue (2023) demonstrates how nascent industry can if organized 
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can nullify local regulations. Other articles have focussed on the impact of market 

concentration, specifically media, on elections and voters’ availability of information 

(Martin and McCrain, 2023). Finally, on competition and the environment, Aghion et al. 

(2023) found that when consumers care about their environmental footprint, firms pursue 

greener products. This paper would extend the existing literature on market power and 

concentration to environmental considerations. My findings will shed light on how the two 

fields are linked, and whether policymakers need to be aware of such trade-offs when 

constructing policies in each field.  

 
3. THEORETICAL FRAMEWORK 
 

In this study, I propose a simplified model of oligopolistic competition where consumers are 

environmentally conscious. The model features two firms producing differentiated products, 

with production processes that result in emissions. A representative consumer purchases 

both goods, and emissions are considered harmful, leading to a scenario where, all else being 

equal, the consumer’s demand for the two goods increases. 

 

I explore the impact of a merger between these two firms on prices and emissions. It is 

posited that a merger could yield specific efficiencies from the combined production of the 

two goods. My analysis demonstrates that if these efficiencies are sufficiently large, the merger 

could lead to increased output, reduced prices, and heightened emissions. Conversely, in 

scenarios where the efficiencies are minimal, the merger leads to higher prices but benefits 

the environment through a reduction in emissions. Thus, our findings underscore a trade-off 

between prices and emissions in markets characterized by polluting production processes. 

My model is intentionally streamlined to underscore this trade-off and to articulate our 

underlying logic. I make certain assumptions regarding consumer preferences and the 

number of firms in the market. Nonetheless, these assumptions are not fundamental. The 

crucial assumptions are twofold: first, that demand decreases as prices increase, and second, 

that emissions escalate with increased output. Given these conditions, any model of 

competition would reveal a similar trade-off between pricing strategies and environmental 

preservation. 

 

Toward the end of this section, I introduce the possibility of an alternative mechanism. 

Specifically, we argue that a merger could lead to a reduction in emissions not solely by 

diminishing output due to enhanced market power but also by fostering innovations in green 

technology. 
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Preferences and Technology There are two products i ∈ {1, 2}, and two firms. Each 

firm produces a different product. A representative consumer buys the two goods. The 

consumer has a Singh and Vives (1984) utility function: 

u(q1 + q2) =  q1 + q2 −
1

2
(q1

2 + q2
2) − γq1q2 − ∅z(q1 + q2) 

where qi is the quantity of product i, and the parameter γ ∈ (0, 1) captures the degree of 

product differentiation. When γ = 0, products are completely unrelated, and firms act as local 

monopolists. When γ = 1, products are perfect substitutes, and Bertrand competition brings 

profits down to zero. We rule out both cases. 

The function z (q1 + q2) describes the technology according to which total output (q1 + q2) 

generates emissions. We assume the following functional form: 

 

z(q1 + q2) = (q1 + q2)∝ 

 

When α > 1 (α ≤ 1), emissions are a convex (concave) function of output. For what follows, 

we assume a linear form: z (q1 + q2) = q1 + q2
1. The parameter ϕ ≥ 0 captures the degree of 

environmental concern for the consumers. When ϕ = 0, the consumer does not care about 

emissions, for example, because the cost of pollution is sustained by people located in 

different locations or by future generations. Then, the utility function can be rewritten as: 

u(q1, q2) =  (1 − ∅)(q1 + q2) −
1

2
(q1

2 + q2
2) − γq1q2 

 

The consumer’s utility maximization problem results in the following demand functions: 

 

𝑞𝑖(𝑝𝑖 , 𝑝𝑗) =
1 −  ∅ −  𝑝𝑖 + 𝛾(𝑝𝑗 +  ∅ − 1)

1 −  𝛾2
 

As expected, qi (pi, pj) is increasing in pj as goods are substitutes and decreasing in pi as goods 

are normal. Interestingly, demand is also decreasing in ϕ. When the degree of environmental 

concern increases, the consumer reduces their consumption to reduce emissions. We assume 

that the two firms are equally efficient. Their marginal cost is c ≥ 0. Profits can then be written 

as follows: 

𝜋𝑖(𝑞𝑖 , 𝑝𝑖 , 𝑝𝑗) = (𝑝𝑖 − 𝑐)𝑞𝑖 =
(𝑝𝑖 − 𝑐)(𝛾(𝑝𝑗 +  ∅ − 1) + 1 − ∅ + 𝑝𝑗)

1 − 𝛾2
 

 
1 Our results are qualitatively robust to changes in the parameter α. In particular, the quadratic case (α = 2) 
is substantially equivalent to the linear case α = 1. We stick to linearity for the sake of simplicity. 
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I now solve the game for two different states of the world m ∈ {0, 1}. If the state is m = 0, 

the two firms do not merge. If the state is m = 1, the two firms merge. Then, we will perform 

a welfare assessment of the merger. 

 

Market Equilibrium Let us start from m = 0. Firms do not merge. Then, they set 

prices simultaneously and independently. The FOC for each firm implies: 

𝑝𝑖
∗(𝑝𝑗) =

1

2
(𝑐 + 𝛾(𝜋𝑖(𝑝𝑗 +  ∅ − 1) + 1 − ∅ 

Intersecting the best responses, we obtain Nash Equilibrium (equilibrium henceforth) prices: 

 

𝑝𝑖
∗ =  

𝛾∅ + 𝑐 −  𝛾 + 1 − ∅

2 − 𝛾
 

 

Total emissions are:  

𝑧(𝑞1
∗ + 𝑞2

∗) =  
2(1 −  𝑐 − ∅)

(2 − 𝛾)(𝛾 + 1)
 

 

Let us now turn to the case of m = 1. After a merger, firms set prices cooperatively. In 

particular, the merged entity chooses prices to maximize the joint sum of profits, that is: 

 

Π(𝑞𝑖 , 𝑞𝑗, 𝑝𝑖 , 𝑝𝑗) = (𝑝𝑖 − 𝜇𝑐)𝑞𝑖 + (𝑝𝑗 − 𝜇𝑐)𝑞𝑗

= ∑
(𝑝𝑖 − 𝑐)(𝛾(𝑝𝑗 +  ∅ − 1) + 1 − ∅ + 𝑝𝑗)

1 −  𝛾2

𝑖

 

In this case, equilibrium prices are: 

𝑝𝑖
𝑚 =

1

2
(𝑐𝜇 + 1 − ∅) 

Total emissions are2: 

𝑧(𝑞1
𝑚 + 𝑞2

𝑚) =  
1 −  𝑐𝜇 − ∅

𝛾 + 1
 

 

It is interesting to see that as ϕ increases, prices decrease for all m. As the degree of 

environmental concern increases, demand shrinks, and firms need to set lower prices. 

 

 
2 We assume that φ < 1 − c so that output and prices are always positive for all m. 
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Merger, Prices and Emissions We are now ready to state our main prediction. The 

merger decreases prices if and only if 

𝜇 <
𝛾∅ + 2𝑐 −  𝛾

𝑐(2 −  𝛾)
≔ 𝜇̂ 

However, whenever 𝜇 <  𝜇̂, the merger increases emissions. The threshold 𝜇̂ is increasing in 

ϕ and decreasing in γ. As in standard competition models, a merger presents a trade-off. On 

one hand, the merger increases market power, potentially leading to higher prices. On the 

other hand, the merger can generate efficiencies, allowing cost savings to be partially passed 

through to consumers. Thus, a merger results in higher prices if, and only if, the efficiencies 

are insufficiently large. Our model suggests a potential environmental “benefit” associated 

with price increases, as a reduction in output implies a reduction in emissions. Conversely, 

should the merger generate significant efficiencies, the merged entities may increase output 

(as production becomes more cost-effective), leading to higher emissions. 

 

The threshold 𝜇̂ increases with ϕ. The more environmentally concerned the consumer, the 

less likely it is that the merger will decrease emissions. This counterintuitive outcome arises 

because an increase in ϕ diminishes the consumer’s willingness to pay, reducing firms’ market 

power and making a pro-competitive outcome more probable. Conversely, the threshold 𝜇̂ 

decreases with γ. A higher degree of product differentiation enhances the merger’s ability to 

create market power, thereby reducing the likelihood of the merger being pro-competitive. 

 

Green Innovation In this section, we explore how a merger can reduce emissions not only 

by decreasing output, which inevitably leads to higher prices, but also by encouraging 

investments in green innovations. We propose a modification to our model for this analysis. 

Suppose that before engaging in the Bertrand competition, each firm has the option to invest 

a cost of K > 0 in green technology. This technology, conceptualized as an emission 

abatement mechanism, enables firms to produce with minimal pollution. Given the 

consumer’s environmental concerns, such innovation is likely to boost demand3. Firms will 

invest in innovation only if the anticipated increase in revenue outweighs the technology’s 

cost, K. We examine how a merger influences firms’ incentives to innovate. 

 

 
3 In scenarios where consumers are indifferent to environmental impact (ϕ = 0), firms lack the incentive to 
invest in green technology. In the real world, the cost of emissions and the financial benefits derived from 
investments in abatement technologies often lead to cost reductions. The logic behind this alternative 
scenario parallels that of our initial model. 
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We specifically focus on equilibria where both firms choose to innovate4. Let Δπ(m) be the 

benefits for a single firm from the innovation as a function of market structure m (given that 

both firms innovate). To obtain these expressions, we compute firms’ profits in the case of 

ϕ = 0, and we compare them with the profits that firms gain when ϕ > 0. Then, 

 

Δ𝜋(0) =
(𝛾 − 1)𝜙(∅ + 2𝑐 −  2)

(𝛾 − 2)2(𝛾 + 1)
> 0 

Δ𝜋(1) =
𝜙(∅ + 2𝑐𝜇 −  2)

4(𝛾 + 1)
> 0 

For all m, both firms invest in the green technology if and only if the cost K is low enough. 

 

Δ𝜋(0) ≥ 𝐾 ⇒ 𝐾 ≤ 𝐾0
̅̅ ̅ 

Δ𝜋(1) ≥ 𝐾 ⇒ 𝐾 ≤ 𝐾1
̅̅ ̅ 

The merger increases the incentives to innovate as 𝐾1
̅̅ ̅  > 𝐾0

̅̅ ̅. 

 

If 𝐾 ∈ (𝐾1
̅̅ ̅ , 𝐾0

̅̅ ̅] both firms invest in the green technology if and only if the merger occurs 

(m = 1). The rationale behind this is straightforward. A merger enhances firms’ incentives to 

innovate by increasing the returns on such investments. Innovation, particularly those that 

increase consumer demand through environmental benefits, becomes more financially 

appealing as it can elevate firms’ profits. In the absence of a merger, however, competitive 

pressures may erode these additional profits. A merger mitigates this competition, enabling 

firms to allocate more resources towards innovation. 

 

A merger can lead to a reduction in emissions through two distinct pathways. Firstly, by 

potentially reducing output, a merger might inadvertently raise prices, a scenario generally 

unfavourable to consumers. Secondly, and more constructively, it can encourage investments 

in green technologies. This dual-faceted outcome highlights the complex impact mergers can 

have on both market dynamics and environmental sustainability. 

 

Due to data availability the section on green innovation is currently missing in the empirical 

results, future iterations of the paper might include it. 

 

 
4 In the absence of a merger (m = 0), it is possible to find equilibria where only one firm innovates, leading 
to higher emissions compared to scenarios where both firms innovate (resulting in zero emissions). Our 
analysis concentrates on situations where both firms innovate, assessing whether a merger can amplify 
incentives for green innovation. 
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4. DATA AND DESCRIPTIVE STATISTICS 

4.1. Data  

Merger data is collated from S&P Capital IQ transactions on private and publicly listed firms 

globally from 2006 to 2022, I have to limit the sample to 2006 for transactions as  early 

emissions data is only available from 2004. For each transaction I am provided with unique 

identifiers for the acquirer and target, their country of incorporation, and sector (SIC code). 

Fundamentals data is collected from Compustat and S&P, where available data on revenues, 

total assets and liabilities is matched to the merger database. 

 

Firm-level carbon emission data is obtained from S&P Capital IQ. GHG scope 1 absolute 

emissions (emissions from directly emitting sources that are owned or controlled by a 

company) are used in this paper. Later iterations might include GHG scope 2 emissions 

(emissions from the consumption of purchased energy generated upstream from a company’s 

direct operations) and GHG scope 1 intensity emissions (absolute emissions scaled by their 

sales or revenues). Transactions for which emission data is not available are excluded from 

the sample, so the merger figure might look smaller with respect to other papers that use the 

entirety universe of merger. 

4.2. Descriptive statistics 

Figure 1 shows that majority of the mergers in the sample are following 2020, this might not 

be aligned to usual samples in the merger literature however it is dictated by emissions data 

becoming more broadly available in recent years. Table 1 highlights how the majority of the 

mergers in the sample are in the manufacturing sector, the reasoning is bi-fold firstly the 

manufacturing sector is highly concentrated and historically had a significant merger activity, 

secondly, as the manufacturing sector is the most polluting, environmental regulation has 

usually applied mandatory disclosure and or targets for this sector before expanding it to the 

rest of the economy.  
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FIGURE 1 • MERGERS IN THE SAMPLE (MATCHED WITH EMISSIONS) 

 

 

TABLE 1 • SECTOR DISTRIBUTION OF MERGERS (MATCHED WITH EMISSIONS) 

 

Table 2 provides detailed descriptive statistics for scope 1 absolute, revenues, assets and 

liabilities for the sample with all mergers. Overall, the descriptive statistics underscore the 

heterogeneity in financial metrics among mergers, with some companies exhibiting extreme 

values in emissions, revenue, assets, and liabilities. While Table 3 compares the mean values 
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of scope 1 absolute, revenues and assets5 between cancelled and successful mergers. As 

expected successful mergers have lower emissions, but they tend to have lower revenues and 

a smaller asset base. 

 

TABLE 2 • DESCRIPTIVE STATISTICS: ALL MERGERS 

 

 

TABLE 3 • DESCRIPTIVE STATISTICS: COMPARISON BETWEEN SUCCESSFUL  

AND CANCELLED MERGERS 

 

 
5. EMPIRICAL METHODOLOGY AND RESULTS 

5.1. Panel event study 

I firstly employ a panel event study methodology, in line with work of Miller (2023) and 

Chaisemartin and D’Haultfoeuille (2020), to investigate the impact of corporate mergers on 

total Scope 1 emissions. The panel event study framework allows for the analysis of 

temporal effects of merger events while controlling for unobserved heterogeneity across 

firms and over time. This approach builds upon the foundational work of seminal event 

studies by Fama et al. (1969) and MacKinlay (1997), which have been instrumental in 

 
5 Unfortunately, the data for total liabilities is missing for several cancelled mergers, for this reason it has not been reported here. 
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examining the effects of corporate events on firm outcomes. The panel event study 

equation is specified as follows: 

𝑌𝑖,𝑡 = 𝛽0 + ∑ 𝛽𝜏𝐷𝑇,𝜏

𝑘

𝜏=−𝑘

+ 𝑋𝑖,𝑡
′ 𝛾 + 𝛼𝑖 + 𝜆𝑡 + 𝑢𝑖,𝑡 

The dependent variable in the model is the log-transformed total scope one absolute 

emissions6, it is important to highlight that this is the sum of emissions of both the target 

company and the acquirer, cases where prior to the merger either company does not report 

their emission are excluded from the sample7. The coefficient of interest is 𝛽𝜏, capturing 

the effect of the event at different time periods relative to the event. 𝐷 𝑇,𝜏 are indicator 

variables that take the value of 1 if time t is τ periods relative to the event (withτ = 0 being 

the event period), and 0 otherwise. 

𝑋𝑖,𝜏
′  is a vector of control variables for firm i at time, in this case revenues, assets and 

liabilities are used, these controls are used as studies (such as Hartzmark and Shue 2023) 

found that revenues, assets and liabilities might impact how much a company pollutes. To 

control for confounding factors, the model includes several fixed effects 𝛼𝑖 is a fixed effect 

for the country of the acquiring firm, target firm (when they differ) and their sectors, 

emissions could be influenced by country specific policies or sector practices and/or 

specificity. Year fixed effects (𝜆𝑡) are included to control for macroeconomic trends and 

shocks that vary over time. The inclusion of fixed effects is crucial for controlling 

unobserved heterogeneity, thereby mitigating the risk of omitted variable bias. 

5.2. Panel event study results 

Table 4 summarizes the results of the event study of the impact of a mergers on Scope 1 

absolute emissions. In column (1) no fixed effects or controls are included, this is also the 

same specification which is illustrated in Figure 2. In column 2-4 fixed effects are 

progressively added (sector, country and year fixed effects). Column (5) is the most 

comprehensive, including firm-level controls along with all fixed effects. Across all 

specification coefficients are negative (ranging from is −0.592 to −0.195) and statistically 

significant, indicating a robust negative effect of mergers on emissions after accounting for 

 
6 The logarithmic form was adopted and the data were windsorized at the 2nd and 98th percentiles in line 
with other papers using emissions as their outcome variable Bolton and Kacperczyk (2021). 
7 I have spoken to the data provider on how emissions are categorised after the merger, usually they are 
reported only for the acquirer, if they are reported for both it means that the company acquired is still 
mandated to independently report their emissions (these are rare cases). Both instances are left in the sample. 
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various factors. Figure 2 shows that the impact of a merger is a persistent decrease in the 

resulting company’s emissions, which is still present three years following the merger. 

TABLE 4 • RESULTS OF THE EVENT STUDY FOR SCOPE 1 ABSOLUTE EMISSIONS 

 

Note: The regression reports the combined companies’ total emissions from the year of the 

merger to three years after. The controls are revenues, assets and, liabilities. The Fixed effects 

are SIC sector fixed effects, emission year, and companies’ country. The decrease in the number 

of observations is because some companies are missing at least one control variable. The 

standard errors are clustered at firm level (regression without clustering leads to similar results). 

FIGURE 2 • PERCENTAGE CHANGE IN SCOPE 1 ABSOLUTE EMISSIONS FOLLOWING A MERGER 
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FIGURE 3 • PERCENTAGE CHANGE IN SCOPE 1 ABSOLUTE EMISSIONS FOLLOWING  

AN HORIZONTAL MERGER 

 

 

TABLE 5 • RESULTS OF THE EVENT STUDY FOR SCOPE 1  

ABSOLUTE EMISSIONS - HORIZONTAL MERGERS 

 

Note: The regression reports the combined companies’ total emissions from the year of the merger to three 
years after. The controls are revenues, assets and, liabilities. The fixed effects are SIC sector fixed effects, 
emission year, and companies’ country. The decrease in the number of observations is because some 
companies are missing at least one control variable. The standard errors are clustered at firm level (regression 
without clustering leads to similar results). 
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In Table 5 I run the same specification as Table 4 but I limit my sample to horizontal 

mergers, by focussing on companies within the same SIC sector. Across all specification 

coefficients are negative (ranging from is −0.485 to −0.065) and statistically significant, 

indicating a robust negative effect of mergers on emissions after accounting for various 

factors. Similarly Figure 3 shows that the impact of a horizontal merger is a persistent 

decrease in the resulting company’s emissions, which is still present three years following 

the merger.  

5.3. Quasi-experiment 

As selection into mergers is endogenous, the main complication is that the average 

treatment effect (ATE) where 𝐴𝑇𝐸 = 𝐸[𝑦𝑖(𝐶 = 1) − 𝑦𝑖(𝐶 = 0)] are the emissions of 

firm i when it is (not) a part of merged company j=1 (j=0). This cannot be observed in the 

data, leading to a selection bias boxed below which creates issues with the estimates 

between merged and non-merged companies:  

𝐸[𝑦𝑖(1)|𝐶 = 1] − 𝐸[𝑦𝑖(0)|𝐶 = 0]

= 𝐸[𝑦𝑖(1)|𝐶 = 1] − 𝐸[𝑦𝑖(0)|𝐶 = 1]

+ 𝐸[𝑦𝑖(0)|𝐶 = 1] − 𝐸[𝑦𝑖(0)|𝐶 = 0]  

In order to isolate the causal effect of merger on emissions I adopt a methodology similar to 

Seru (2014), Bena and Li (2014), and Gugler et al. (2003). In an ideal experimental setting, I 

could randomly assign firms with similar characteristics into merged and non-merged 

companies and remove this selection bias. To proxy for this ideal setting the empirical strategy 

in this section of the paper adopts a quasi-experiment involving cancelled mergers, i.e. mergers 

that were announced but failed to successfully complete, aiding to generate exogenous variation 

in acquisition outcomes of target firms. I hypothesize that the reasons for which the mergers 

failed to go through are unrelated to emissions of the target (control group). 

Mergers could fail to complete after being announced due to a variety of reasons including 

regulatory hurdles (Eckbo, 1983), financing issues (Kaplan and Stromberg, 2009), cultural 

clashes (Weber, Shenkar, and Raveh, 1996), economic condition changes (Shleifer and 

Vishny, 2003), discoveries during due diligence (Krishnan, Hitt, and Park, 2005), and 

shareholder opposition (Mulherin and Boone, 2000). These factors should be unrelated to 

emissions of the target.  

In my specification the treatment group is composed of firms in a completed merger and 

the control group is firms in a merger that was announced but subsequently cancelled. The 

two groups then form a sample in which the assignment of a firm to the acquirer role can 
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be considered random. This assumption allows me to eliminate any selection bias by 

comparing the emissions of firms in the treatment group before and after the merger with 

those in the control group (Seru, 2014). 

The empirical strategy leverages the difference-in-differences (DD) framework to estimate 

the impact of mergers on corporate emissions. Specifically, we compare the logarithm of 

total Scope 1 absolute emissions (windsorized) between companies that completed their 

mergers (treatment group) and those that cancelled their mergers (control group). The 

specification is as follows: 

𝑌𝑖𝑡 = α + β1 Afterit  +  β2 (Afterit x 𝑇𝑖)  + 𝑋𝑖,𝑡
′ 𝛾 + 𝛼𝑖 + 𝜆𝑡 + 𝑢𝑖,𝑡 

where After is an indicator variable that takes a value of one for all the years after the event 

date and zero otherwise, and T is an indicator variable that takes a value of one for targets 

in the treatment group and zero for targets in the control group. Similar to the event study 

in this specification we have 𝑋𝑖,𝜏
′  a vector of control variables for firm i at time and several 

fixed effects, country of the acquiring firm and target firm (when they differ) and their 

sectors. 

5.4. Quasi-experiment results 

Table 6 shows the difference-in-differences results for the entire sample. The coefficient 

on the Post variable indicates the effect of the post-merger period on emissions. While it 

varies in significance across different specifications, it is consistently positive and significant 

in models (3) to (5), suggesting an increase in emissions post-merger when accounting for 

various fixed effects and controls. The interaction term Post*Treated is consistently 

negative and highly significant across all models, indicating that treated firms experienced 

a significant reduction in emissions compared to the control group after the merger. This 

finding is robust to the inclusion of sector, year, and country fixed effects, as well as firm-

level controls, underscoring the validity of the observed effect. 

Similarly Figure 4 demonstrates the presence of parallel trends, as evidenced by the 

overlapping confidence intervals for emissions of treated and control firms prior to the 

merger date. After the merger date, the treated companies show a decrease in emissions 

compared to the control group.  

Table 7 focuses on horizontal mergers, examining the impact of mergers within the same 

industry. The coefficient on the Post-Event variable is negative and significant across all 

specifications, indicating a reduction in emissions for firms involved in horizontal mergers. 

The results are robust even after including various fixed effects and controls. 
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FIGURE 4 • DIFFERENCE IN PERCENTAGE CHANGE IN SCOPE 1 ABSOLUTE EMISSIONS 

BETWEEN CANCELLED AND COMPLETED MERGERS 

 

 

TABLE 6 • RESULTS OF THE DD SPECIFICATION FOR SCOPE 1 ABSOLUTE EMISSIONS 
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TABLE 7 • RESULTS OF THE DD SPECIFICATION FOR SCOPE 1 ABSOLUTE EMISSIONS  

HORIZONTAL MERGERS 

 

6. CONCLUSION 
 

This study delves into the intricate relationship between corporate mergers and 

environmental outcomes, specifically focusing on Scope 1 absolute emissions. The theoretical 

model explores the nuanced dynamics between oligopolistic competition, consumer 

environmental consciousness, and the impact of mergers on emissions. It highlights a trade-

off where significant production efficiencies post-merger can lead to higher output, lower 

prices, and increased emissions, while minimal efficiencies result in higher prices but lower 

emissions, showcasing environmental benefits. The model also suggests that mergers may 

incentivize green innovation, offering a pathway to reducing emissions. 

 

The findings from both empirical strategies highlight the reduction in emissions following a 

corporate merger. The first empirical strategy utilized a panel event study framework to assess 

the temporal effects of mergers on emissions. This approach, grounded in the work of Miller 

(2023) and Chaisemartin and D’Haultfoeuille (2020), allowed for the examination of 

emissions before and after the merger, while controlling for unobserved heterogeneity across 

firms and over time. The results consistently demonstrated a significant reduction in 

emissions following mergers, with the effect persisting up to three years post-merger. The 
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second empirical strategy adopted a quasi-experimental design to address the endogeneity of 

merger selection. Inspired by Seru (2014), Bena and Li (2014), and Gugler et al. (2003), this 

approach compared firms that completed mergers with those that announced but 

subsequently cancelled their mergers. Utilizing the difference-in-differences (DiD) 

framework, this methodology isolated the causal impact of mergers on emissions. The results 

indicated that firms in completed mergers experienced a substantial reduction in emissions 

compared to the control group. This effect was particularly pronounced in horizontal 

mergers, where firms within the same industry demonstrated significant emissions 

reductions. These results are aligned to the key hypothesis that an increase in market 

concentration is correlated with a decrease in emissions. 

 

The findings highlight how corporate mergers improves the environmental performance of 

firms, particularly in terms of reduced emissions. This observation suggests a more nuanced 

picture of mergers, extending beyond their traditional economic or financial goals to include 

potential environmental advantages. The reduction in emissions post-merger could be 

attributed to several factors, including enhanced operational efficiencies, access to better 

technologies, and improved management practices. Moreover, the results emphasize the 

importance of distinguishing between the sources of environmental benefits, advocating for 

technological advancements as a key factor for improved environmental outcomes post-

merger. 

 

This study contributes to the broader literature on the non-market effects of market power 

and market concentration. By shedding light on the environmental implications of mergers, 

it provides valuable insights for policymakers and stakeholders. The results suggest that 

corporate consolidation, under certain conditions, can align with environmental sustainability 

goals. This has important implications for competition policy and environmental regulation, 

highlighting the need for a balanced approach that considers both economic and 

environmental objectives. 

 

In conclusion, the study underscores the complex interplay between market consolidation 

and environmental performance. While mergers can lead to increased market power, they 

can also drive efficiencies that result in reduced emissions. The dual-faceted outcomes of 

mergers, in terms of both economic and environmental impacts, emphasize the need for 

integrated policy frameworks that promote sustainable business practices. Future research 

could further explore the mechanisms through which mergers influence environmental 

performance, as well as the long-term sustainability of these effects. This would provide a 

deeper understanding of how corporate strategies and market structures can be designed to 

support both economic growth and environmental protection.  
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