Displacing Congestion: Evidence from Paris

Léa Bou Sleiman (CREST - Ecole Polytechnique)

May 25, 2023

Motivation

- ★ Policy-makers all agree on the urge to ↓ greenhouse gas emissions and local pollution
- * Yet, the type of policy that would do it best is still an open debate
- ★ Support for climate policies hinges on 3 key perceptions (Fabre et al., 2022):
 - 1. Effectiveness concern
 - 2. Inequality concern
 - 3. Self-interest
 - \rightarrow Concerns that prompted **public backlash** against some environmental policies (e.g. carbon taxes and urban tolls)
- * Car-free streets have become a clear call of contemporary urbanism
 - e.g. Market Street in San Francisco (2020), 14th street in NYC (2019), Center of Madrid (2018), Center of Oslo (2019), Riverbank in Paris (2016)

Research Question

What are the impacts of downsizing the road supply? What are the distributional impacts of this policy?

Research Question

What are the impacts of downsizing the road supply? What are the distributional impacts of this policy?

- Goal of this paper: Understand the impacts of policies aiming at getting rid of cars in a city-center
 - Spillover onto other roads:
 - How does it affect nearby roads?
 - How does it affect major roads at the periphery of the city?
 - Negative externalities associated with a displacement of traffic
- * This is key:
 - 1. urban aspect: to understand which road should be tailed off
 - 2. **environment aspect**: to assess whether these policies are effective in reaching the environmental goals

Closed section:

- 3.3km pedestrianized in the center in September 2016
- ⋆ Tourist area: near the Notre-Dame Cathedral
- ★ Along the river
- ★ Increase in amenities: 945,000 pedestrians and cyclists a year

Riverbank road (GP):

- * 13-kilometer road
- ⋆ Only expressway to cross the city
- * Unique flow direction: eastward
- * 40k vehicles per day
- * Part of a road network of general interest
- * Average travel time during daytime: 22min
- * Fastest road to cross the city

Treatment and control groups:

- * Local substitute roads:
 - Upper Banks
 - Bd St Germain
 - → Lower Banks: only difference is opposite flow direction

Treatment and control groups:

- * Local substitute roads:
 - Upper Banks
 - Bd St Germain
 - → Lower Banks: only difference is opposite flow direction
- * Substitute to the entire GP: South outer ring road
 - → South inner ring road: only difference is **opposite flow** direction

This paper: Reduced-Form

1. Traffic:

- Setting: Evaluation of the pedestrianization of 3.3km of the Georges Pompidou (GP)
- Key feature for identification: flow direction of roads

2. Pollution:

- Estimation of the elasticity of air pollution with respect to average speed on nearby roads
- Imputation of the impact on pollution using results on the average speed

3. Housing Prices:

- Estimation of the causal impact of the GP closure on housing prices near the ring roads using a difference-in-difference at the boundary of a road

This Paper: Structural Model

Why a model?

Impacts on traffic delays are non-linear

This Paper: Structural Model

Why a model?

Impacts on traffic delays are non-linear

⋆ Goal:

- Characterize how commuters reallocate on substitute roads in the short-run when the road supply is reduced
- 2. Characterize the implied consequences in terms of pollution and travel time loss
- 3. Understand who bears the consequences of the policy

This Paper: Structural Model

Why a model?

Impacts on traffic delays are non-linear

★ Goal:

- 1. Characterize how commuters reallocate on substitute roads in the short-run when the road supply is reduced
- 2. Characterize the implied consequences in terms of pollution and travel time loss
- 3. Understand who bears the consequences of the policy
- * Estimate the congestion elasticity on each road
- * Estimate the number of commuters switching on roads at the limit of the city
- * Validation of reduced-form results
- * Quantify the costs of the policy: air pollution and travel time loss
- * Simulate counterfactual situations:
 - Car-ban in the center of Paris
 - Changing the length of the closed segment

Preview of results

- ★ Displacement of traffic to substitute roads:
 - Increase in congestion on local roads and on the ring road
 - Decrease in the average speed on local roads and on the ring road
 - Substantial time loss for commuters
- ★ Displacement of pollution mostly towards the periphery:
 - Increase in emissions of nitrogene dioxide:
 - ► near the periphery: +5.6%
 - ightharpoonup in the center: +1.7%
- * **Negative externalities** well-capitalized in housing prices:
 - Housing Prices near the periphery decreased by at least 5%
- * Policy design matters:
 - 85% of the pollution costs could have been avoided the road was reduced by 15% (instead of 25%)

Plan

Introduction

Data

Identification

Impact on Traffic

Impact on Pollution

Conclusion

Loop Sensors

- * Occupancy Rate: time vehicles stay on a loop as a percentage of an hour
- * Flow of cars: number of cars that pass by a point in an hour
- ★ Data from 2013 to 2019
- * 1.300km of main road lanes in Paris
- * 6.6km of road lanes pedestrianized: 0.5% of the road network

Plan

Introduction

Data

Identification

Impact on Traffic

Impact on Pollution

Conclusion

Specification

* Basic equation :

$$Y_{it} = \alpha + \gamma 1_{treated_i=1} 1_{post=1} + \lambda_t + \psi_i + \epsilon_{it}$$
 (1)

where i represents the arc (a segment of a road) and t the time

⋆ Dynamic equation:

$$Y_{it} = \alpha + \sum_{k=-2, k\neq 0}^{+3} \beta_k 1_{treated_i=1} 1_{T(t)=k} + \lambda_t + \psi_i + \epsilon_{it}$$
 (2)

where $1_{t=k}$ is an indicator variable equals to 1 for year k relative to year Sept2015-Aug2016

- * Y_{it} denotes the outcome considered on arc i at date t, and T(t) represents the relative year compared to the year the GP riverbank was pedestrianized
- * Standard errors clustered at the arc level
- \star β_k represents the **incremental impact** of the policy on year k, compared to the year before the GP riverbank was pedestrianized

Flow Direction: Key element for identification

- * A commuter living in the south east and working in the south west:
 - Treatment group in the morning (south outer ring road)
 - Control group in the evening (south inner ring road)
- * If eastward commuter shifts on alternative means to car:
 - -1 car in the **morning** on the treated road
 - -1 car in the **evening** on control road on the control road
- * Problem with keeping same time slots for treated and control roads:
 - Create an omitted variable bias in comparison
- * To evaluate the treatment effect on morning traffic:
 - Treatment group: morning hours eastward road
 - Control group: evening hours westward road

Common Trends

Plan

Introduction

Data

Identification

Impact on Traffic

Impact on Pollution

Conclusion

Flow ↑ on local roads and ↓ on ring road

	(1)	(2)	(3)	
	Flow (in log)			
	Morning	Evening	Daytime	
	Ring Roads			
Treatment	-0.061***	-0.081***	(0.061***)	
	(0.013)	(0.020)	(0.013)	
Constant	8.387***	8.366***	8.395***	
	(0.003)	(0.005)	(0.003)	
Observations	14,4155	97,405	627,122	
	Local Roads			
Treatment	0.331***	0.212***	0.264***	
	(0.050)	(0.051)	(0.048)	
Constant	7.125***	7.331***	7.189***	
	(0.017)	(0.017)	(0.017)	
Observations	335,934	227,045	1,461,499	
Arc FE	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	

^{*} p<.10, ** p<.05, *** p<.01

standard errors clustered at the arc level

Occupancy rates \

	(1)	(2)	(3)	
	Occupancy rate (in log)			
	Morning	Evening	Daytime	
	Ring Roads			
Treatment	0.094***	0.142***	0.112***	
	(0.017)	(0.026)	(0.018)	
Constant	3.141***	3.264***	3.146***	
	(0.004)	(0.007)	(0.005)	
Observations	176,038	118,781	765,044	
		Local Road		
Treatment	0.321***	0.328***	0.339***	
	(0.078)	(0.083)	(0.080)	
Constant	2.158***	2.365***	2.233***	
	(0.024)	(0.025)	(0.024)	
Observations	397,931	268,689	1,729,726	
Arc FE	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	
* p< 10. ** p<	05. *** p<.0	1		

standard errors clustered at the arc level

Average Speed ↓

	(1)	(2)	(3)		
	Average Speed (in log)				
	Morning	Evening Daytime			
		Ring Roads			
Treatment	-0.154***	-0.175***	(0.165***)		
	(0.032)	(0.033)	(0.029)		
Constant	3.325***	3.220***	3.243***		
	(0.009)	(0.008)	(0.007)		
Observations	120,788	204,004	627,122		
R^2	0.587	0.581	0.586		
		Local Roads	5		
Treatment	-0.113	-0.170**	(-0.175**)		
	(0.083)	(0.080)	(0.083)		
Constant	2.421***	2.480***	2.420***		
	(0.033)	(0.027)	(0.028)		
Observations	292,214	474,261	1,461,407		
R^2	0.698	0.665	0.692		
Arc FE	Yes	Yes	Yes		
Time FE	Yes	Yes	Yes		
* p<.10. ** p<.	05. *** p<.01				

^{*} p<.10, ** p<.05, *** p<.01

standard errors clustered at the arc level

Probability of congestion ↑

	(1)	(2)	(3)
	Probab	oility of cor	ngestion
	Morning	Evening	Daytime
		Ring Road	
Treatment	0.106***	0.107***	(0.119***)
	(0.032)	(0.018)	(0.022)
Constant	0.359***	0.444***	0.421***
	(0.009)	(0.004)	(0.005)
Observations	120,788	204,004	627,123
R^2	0.363	0.366	0.372
		Local Road	
Treatment	0.033	0.100***	0.101***
	((0.025)	(0.031)	(0.031)
Constant	0.053***	0.075***	0.079***
	(0.010)	(0.011)	(0.011)
Observations	292,243	474,426	1,461,657
R^2	0.242	0.239	0.284
Arc FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
* n < 10 ** n <	05 *** n/ 0	1	

^{*} p<.10, ** p<.05, *** p<.01

standard errors clustered at the arc level

Plan

Introduction

Data

Identification

Impact on Traffic

Impact on Pollution

Conclusion

Pollution: Strategy

In the **pre-shutdown** period and for each monitor, I estimate:

$$In(NO_{2t}) = \alpha In(Speed_t) + \beta Flow_t + \theta W'_t + \delta_{h(t)} + \delta_{m(t)} + \epsilon_t$$

 W_t' a vector of weather characteristics. $\delta_h(t)$ and $\delta_m(t)$ are resp. hour of the day and month of the sample fixed effects.

\uparrow in NO_2 emissions, higher near the ring road

	NO ₂ Emissions (in log)			
	Ring Road		Upper Banks	
Speed (in log)	-0.375 6***	-0.3426***	-0.08 05***	-0.0887***
	(0.024)	(0.021)	(0.024)	(0.020)
Flow of cars	0.0001***	0.0001***	0.0004***	0.0004***
	(0.000)	(0.000)	(0.000)	(0.000)
Constant	4.0497***	4.5205***	2.6991***	4.4591***
	(0.151)	(0.144)	(0.105)	(0.100)
Observations	7,552	7,551	10,171	10,170
R^2	0.2158	0.4055	0.3607	0.5294
Weather Characteristics	No	Yes	No	Yes
Month of the sample FE	Yes	Yes	Yes	Yes
Hour of the day FE	Yes	Yes	Yes	Yes
* 10 ** 05 *** 01				

^{*} p<.10, ** p<.05, *** p<.01

\uparrow in NO_2 emissions, higher near the ring road

	NO ₂ Emissions (in log)			
	Ring Road		Upper Banks	
Speed (in log)	-0.375 6***	-0.3426***	0.08 05***	-0.0887***
	(0.024)	(0.021)	(0.024)	(0.020)
Flow of cars	0.0001***	0.0001***	0.0004***	0.0004***
	(0.000)	(0.000)	(0.000)	(0.000)
Constant	4.0497***	4.5205***	2.6991***	4.4591***
	(0.151)	(0.144)	(0.105)	(0.100)
Observations	7,552	7,551	10,171	10,170
R^2	0.2158	0.4055	0.3607	0.5294
Weather Characteristics	No	Yes	No	Yes
Month of the sample FE	Yes	Yes	Yes	Yes
Hour of the day FE	Yes	Yes	Yes	Yes
* n < 10 ** n < 05 ***		163	163	163

^{*} p<.10, ** p<.05, *** p<.01

Local roads: $\alpha_{local} = -0.09\%$ & Speed \uparrow 17.5% : \uparrow 1.7% in nitrogen dioxide **Ring roads**: $\alpha_{ringroad} = -0.34\%$ & Speed \uparrow 16.5%: \uparrow 5.6% in nitrogen dioxide

Plan

Introduction

Data

Identification

Impact on Traffic

Impact on Pollution

Conclusion

Policy Implication

- * Potential benefits of car-free areas:
 - ↓ noise and air pollution in the car-free area
 - ↑ in amenities: attract tourists, visitors
 - ↑ in the quality of urban life
- * In this paper, I show that road-reduction policies, if not managed thoroughly can:
 - unintentionally have negative effects on the environment
 - increase the inequality gap
- * Policy-makers should ensure that their actions address both mitigation and adaptation in ways that are as fair and inclusive as possible, leaving no one behind
 - offer credible alternatives
 - make sure that traffic is not diverted to MORE congested roads

Faster to take the GP than the south outer ring road

Figure: Difference in travel time between the GP and the south outer ring road

3.3-km Closure

Figure: Flow per hour on the GP riverbank

Threat: Mode switch among indirect treated commuters (1/2)

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y

Threat: Mode switch among indirect treated commuters (1/2)

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y
- \star **Post-shutdown:** δx drop their cars
 - Total number of commuters on south outer ring road: $(x - \delta x) + GP$ commuters
 - Total number of commuters on south inner ring road: $(y \delta x)$

Threat: Mode switch among indirect treated commuters (1/2)

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y
- \star **Post-shutdown:** δx drop their cars
 - Total number of commuters on south outer ring road: $(x - \delta x) + GP$ commuters
 - Total number of commuters on south inner ring road: $(y \delta x)$
- $\rightarrow \gamma_{did} = \mathsf{GP}$ commuters \checkmark

Threat: Mode switch among indirect treated commuters (2/2)

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y

Threat: Mode switch among indirect treated commuters (2/2)

* Pre-shutdown:

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y

* **Post-shutdown:** δx drop their cars

- Total number of commuters on south outer ring road:

$$(x - \delta x) + GP$$
 commuters

 Total number of commuters on south inner ring road:

У

Threat: Mode switch among indirect treated commuters (2/2)

* Pre-shutdown:

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y

\star **Post-shutdown:** δx drop their cars

 Total number of commuters on south outer ring road:

$$(x - \delta x) + GP$$
 commuters

 Total number of commuters on south inner ring road:

y

 $ightarrow \gamma_{\it did} = {
m GP}$ commuters - $\delta {
m x}$

≠ GP commuters

Threat: Mode switch among direct treated commuters

* Pre-shutdown:

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y

Threat: Mode switch among direct treated commuters

* Pre-shutdown:

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y
- * Post-shutdown: All GP commuters drop their cars
 - Total number of commuters on south outer ring road:
 - Total number of commuters on south inner ring road:
 y - GP commuters

Threat: Mode switch among direct treated commuters

* Pre-shutdown:

- Total number of commuters on south outer ring road: x
- Total number of commuters on south inner ring road: y
- * Post-shutdown: All GP commuters drop their cars
 - Total number of commuters on south outer ring road:
 - Total number of commuters on south inner ring road:
 y - GP commuters
- $\rightarrow \gamma_{did} = + \text{ GP commuters } \neq 0!$

Public Transportation

Impact on public transportation

- * Treatment group: pass validations for train stations on the west and east of Paris
- * Control group: pass validations for train stations on the north and south of Paris

Figure: Number of pass validations on the RER A (treatment) and the RER B (control)

No suggestive evidence of modal shift

Figure: Treatment effects on the number of pass validation of the RER A

Google Maps Trips - close suburbs

Google Maps Trips - far suburbs

Google Maps Trips - inner-city

Is the local control road impacted by the GP closure?

∢ Back

Impact on the Occupancy Rate (log)

Common Trends - Flow of cars

∢ Back

Density Low - Speed High

Density High - Speed High

Density High - Speed Low

Fundamental Diagram

- Vehicle Density is linked to both speed and flow
- Vehicle Density affects speed (non linearly)
- * After reaching a certain point: as density increases, speed decreases.
- * As speed decreases, flow of cars (per hour) decreases

Pollution-Speed Relationship

Dynamic Impact on the Flow of Cars

Dynamic Impact on Occupancy Rate

Estimation of the Fundamental Diagram

Figure: Quadratic relationship between flow and occupancy rates on one arc of the south outer ring road

Displacing Congestion: Evidence from Paris

Speed

∢ Back

Athol's formula

$$Speed_{it} = \frac{Flow_{it} \times (L + K_i)}{Occupancy_{it}}$$

- Speed_{it} represents the average speed (km/h) on road section i at time t
- $Flow_{it}$ and $Occupancy_{it}$ are the flow per lane of road and the occupancy rate on section i at time t
- L represents the average length of vehicles and K_i is the length in km of the road section i
- Assumption: average length of vehicles equals to 4.5 meters

Dynamic Impact on Congestion

Dynamic Impact on Speed

Concentrations at the periphery already higher than in the center

Table: Yearly levels of NO₂

	Ring Road		Upper Banks		
Year	Mean	Sd. Dev.	Mean	Sd. Dev.	
2013	75.6	47	66.7	31.7	
2014	74.7	36.5	62.08	30.5	
2015	67	34.8	60.4	30.6	
2016	66.2	34.8	59,3	28.7	
2017	64.8	34.3	58.6	30.05	
2018	67.4	33	59	29.8	

• European Environment Agency: yearly levels should be below 40 $\mu g/m^3$

Housing Prices: Identification

Figure: Housing Transactions between 2014 and 2018

- ★ 350-meters of social housings between the ring road and another boulevard inside Paris
- Housing transactions in Paris less impacted by the increase in congestion on the ring road

Housing Prices: Identification

Figure: Housing Transactions between 2014 and 2018

◆ Back

- ★ 350-meters of social housings between the ring road and another boulevard inside Paris
- Housing transactions in Paris less impacted by the increase in congestion on the ring road

⇒ <u>Strategy</u>:
Difference-in-difference at the boundary

Housing Prices: Empirical Strategy

$$In(HV_{it}) = \beta In(Area_i) + \theta Rooms_i + \sum_{k=-2, k \neq -1}^{+2} \gamma_k Treated_i * Year_{k(t)} + \delta_{m(t)} + \delta_{n(i)} + \epsilon_{it}$$

- \star HV_{it} is the housing value of transaction i at time t
- Treated; is a dummy variable that takes the value 1 if transaction i is outside the limits of Paris and 0 otherwise
- * k year relative to the year the GP was closed
- \star $\delta_{m(t)}$ and $\delta_{n(i)}$ are respectively month of the sample and neighborhood fixed effects

Significant ↓ in Housing Values in 2017

- * Announcement of new metro lines in the south suburbs early 2018
- \star Sullivan (2016) finds that an \uparrow in 1 $\mu g/m^3$ in NO_2 emissions \to housing values \downarrow by 0.7%
- \star Near the ring road, NO_2 increased by 3.8 $\mu g/m^3$
 - \Rightarrow Impact on housing prices is much larger than the one reflected in the literature

Model validates DiD results on speed

Main

Pollution Cost

The upper banks are spread over 2 municipalities, the boulevard saint germain over 3 and the south ring roads over 10

I assume that half of the residents in each municipality suffers from higher exposure to air pollution. I consider that a $1 \ \mu g/m^3$ increase in NO_2 emissions is responsible for 727 \in in health cost expenditure in every postcode area per day.

Robustness Checks

	(1)	(2)	(3)	(4)	(5)	
	Occupancy rate (in log)					
	Ring Roads					
Treatment	0.112***	0.117***	0.112***	0.112***	0.112***	
	(0.018)	(0.018)	(0.018)	(0.000)	(0.018)	
Constant	3.146***	3.071***	3.158***	3.146***	3.146***	
	(0.005)	(0.068)	(0.006)	(0.000)	(0.005)	
Observations	765,044	765,044	765,047	765,044	765,044	
R^2	0.569	0.297	0.372	0.569	0.569	
	Local Roads					
Treatment	0.339***	0.357***	0.339***	0.339*	0.339***	
	(0.080)	(0.084)	(0.079)	(0.108)	(0.080)	
Constant	2.233***	2.142***	2.247***	2.233***	2.233***	
	(0.024)	(0.091)	(0.015)	(0.033)	(0.024)	
Observations	1,729,726	1,729,726	1,729,733	1,729,726	1,729,726	
R^2	0.579	0.250	0.482	0.579	0.579	
Arc FE	Yes	No	Yes	Yes	Yes	
Time FE	Yes	Yes	No	Yes	Yes	
Additive time FE	No	No	Yes	No	No	
Clustering	Arc	Arc	Arc	Road	Arc	
Winsorized data	No	No	No	No	Yes	

^{*} p<.10, ** p<.05, *** p<.01

Changing control groups - Occupancy rate

No Simultaneous Policies Impacting the Estimates

Figure: Placebo Tests on the Average Speed

Impact at night & week-end

Impact on north ring road

∢ Back

GP - summary statistics

∢ Back

Pollution

- * The presence of cars on the road increases air pollution
 - 1. the number of cars
 - 2. the level of congestion

Pollution

- * The presence of cars on the road increases air pollution
 - 1. the number of cars
 - 2. the level of congestion
- * The level of pollutant emissions:

$$A_{j}(\mu(r')) = \begin{cases} S_{r'}(N_{r'})^{-\alpha_{\mu(r')}} & \text{if } S_{r'} < \tilde{S}_{r'} \\ S_{r'}(N_{r'})^{\zeta_{\mu(r')}} & \text{if } S_{r'} > \tilde{S}_{r'} \end{cases}$$

- $\tilde{\mathcal{S}_{r'}}$ is the threshold above which an increase in the average speed increases emissions
- $lpha_{\mu(r')}$ is the elasticity of pollution with respect to the speed whenever $S_{r'} < ilde{S_{r'}}$
- $\zeta_{\mu(r')}$ the elasticity of pollution with respect to the speed whenever $S_{r'} > ilde{S_{r'}}$

Time Loss

Table: Time Loss in Euro Value

Commuters	Time lost	Daily Cost in €	Yearly Cost in €
Ex-riverbank diverted to the ring road	4	0.88	228.8
Ex-riverbank diverted to local roads	13	2.86	743.6
Commuters on ring road	4	0.88	228.8
Commuters on local roads	2.6	0.57	148.72

Notes: I consider that commuters experience an increase in travel time only during weekdays. I multiply the daily cost by 260 days to obtain the yearly cost. Since the expressway is a unique flow direction road, only one way of the commuting trip is impacted. The westward trip of each commuter remains unchanged with no additional cost associated to it.

Changing the length of the closed segment

∢ Back

⇒ Below 2.6-kilometers, suburbans choose local roads

Closing 1.8-kilometers to avoid 90% of pollution costs

◆ Back

 \Rightarrow By closing **1.8-kilometers**: time cost is unchanged but pollution cost \downarrow by 90%

Minimal mode switch for zero net pollution costs

∢ Back

- * Two potential scenarios:
 - 1. All commuters shift on local roads
 - 2. Suburban commuters shift on the ring road

Minimal mode switch for zero net pollution costs

∢ Back

- * Two potential scenarios:
 - 1. All commuters shift on local roads
 - 2. Suburban commuters shift on the ring road
- * First Scenario: All commuters shift on local roads
 - Suburban commuters prefer local roads instead of ring road
 - Average speed on local roads should be > 35 km/h

Minimal mode switch for zero net pollution costs

- * Two potential scenarios:
 - 1. All commuters shift on local roads
 - 2. Suburban commuters shift on the ring road
- * First Scenario: All commuters shift on local roads
 - Suburban commuters prefer local roads instead of ring road
 - Average speed on local roads should be > 35 km/h
 - \rightarrow Impossible to achieve!
- * Second Scenario: Suburban commuters on the ring road
 - 10% of suburban commuters need to drop their car
 - 50% of inner-city commuters need to drop their car

Potential impacts of a wider car-free area

- The upper banks no longer belong to the set of substitute roads
- * Boulevard Saint Germain becomes the only road on which commuters can switch to
- ★ Density of cars ↑ by 34%, ↓ speed by 33.7%
- \Rightarrow Time cost of 60.5M and a pollution cost of 7M